001005766 001__ 1005766
001005766 005__ 20240226075259.0
001005766 0247_ $$2doi$$a10.1103/PhysRevMaterials.6.124603
001005766 0247_ $$2ISSN$$a2475-9953
001005766 0247_ $$2ISSN$$a2476-0455
001005766 0247_ $$2Handle$$a2128/34234
001005766 0247_ $$2WOS$$aWOS:000914422000003
001005766 037__ $$aFZJ-2023-01619
001005766 041__ $$aEnglish
001005766 082__ $$a530
001005766 1001_ $$0P:(DE-HGF)0$$aRosenzweig, D. S.$$b0$$eCorresponding author
001005766 245__ $$aAtomically resolved study of initial stages of hydrogen etching and adsorption on GaAs(110)
001005766 260__ $$aCollege Park, MD$$bAPS$$c2022
001005766 3367_ $$2DRIVER$$aarticle
001005766 3367_ $$2DataCite$$aOutput Types/Journal article
001005766 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680261183_32589
001005766 3367_ $$2BibTeX$$aARTICLE
001005766 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005766 3367_ $$00$$2EndNote$$aJournal Article
001005766 520__ $$aThe initial stages of hydrogen adsorption on GaAs(110) surfaces at room temperature are investigated by atomically resolved scanning tunneling microscopy and spectroscopy. Two effects are found to occur simultaneously: On the one hand a surface phase separation occurs, creating 1×1 reconstructed fully hydrogen-covered areas while leaving the surface in between completely hydrogen free. In the fully hydrogen-covered areas, hydrogen bonds equally to As- and Ga-derived dangling bonds, unbuckling and passivating the surface. On the other hand, hydrogen-induced point defects are formed with increasing density. The dominating defects consist of As vacancy–hydrogen defect complexes, formed by preferential hydrogen etching of As. Using a defect-molecule model the Ga-H bridge bonds and double-occupied Ga dangling bonds are suggested to be at the origin of the observed surface Fermi level pinning 0.25 to 0.3 eV above the valence band edge, identical within error margins for p- and n-doped GaAs(110).
001005766 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001005766 588__ $$aDataset connected to DataCite
001005766 7001_ $$00000-0003-3891-9744$$aHansemann, M. N. L.$$b1$$eCorresponding author
001005766 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, M.$$b2
001005766 7001_ $$0P:(DE-Juel1)130627$$aEbert, Ph.$$b3
001005766 7001_ $$00000-0001-6603-0008$$aEisele, H.$$b4
001005766 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.6.124603$$gVol. 6, no. 12, p. 124603$$n12$$p124603$$tPhysical review materials$$v6$$x2475-9953$$y2022
001005766 8564_ $$uhttps://juser.fz-juelich.de/record/1005766/files/Atomically.pdf$$yOpenAccess
001005766 8564_ $$uhttps://juser.fz-juelich.de/record/1005766/files/PhysRevMaterials.6.124603.pdf$$yOpenAccess
001005766 909CO $$ooai:juser.fz-juelich.de:1005766$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005766 9101_ $$0I:(DE-HGF)0$$60000-0003-3891-9744$$aExternal Institute$$b1$$kExtern
001005766 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b2$$kFZJ
001005766 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b3$$kFZJ
001005766 9101_ $$0I:(DE-HGF)0$$60000-0001-6603-0008$$aExternal Institute$$b4$$kExtern
001005766 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001005766 9141_ $$y2023
001005766 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001005766 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001005766 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2021$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005766 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
001005766 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
001005766 920__ $$lyes
001005766 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001005766 980__ $$ajournal
001005766 980__ $$aVDB
001005766 980__ $$aUNRESTRICTED
001005766 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001005766 9801_ $$aFullTexts