001005770 001__ 1005770
001005770 005__ 20230929112521.0
001005770 0247_ $$2doi$$a10.18416/IJMPI.2023.2303087
001005770 0247_ $$2doi$$a10.18416/ijmpi.2023.2303087
001005770 0247_ $$2Handle$$a2128/34228
001005770 037__ $$aFZJ-2023-01623
001005770 041__ $$aEnglish
001005770 082__ $$a500
001005770 1001_ $$0P:(DE-Juel1)190282$$aBikulov, Timur$$b0$$eCorresponding author$$ufzj
001005770 1112_ $$aInternational Workshop on Magnetic Particle Imaging$$cAachen$$d2023-03-22 - 2023-03-24$$gIWMPI$$wGermany
001005770 245__ $$aPassive mixer model for multi-contrast magnetic particle spectroscopy
001005770 260__ $$aLübeck$$bInfinite Science Publishing$$c2023
001005770 3367_ $$2DRIVER$$aarticle
001005770 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
001005770 3367_ $$2DataCite$$aOutput Types/Journal article
001005770 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680246665_31395
001005770 3367_ $$2BibTeX$$aARTICLE
001005770 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005770 3367_ $$00$$2EndNote$$aJournal Article
001005770 520__ $$aFor realizing multi-contrast MPI with different types of SuperParamagnetic Nanoparticles (SPN), reconstruction of the particles’ core diameter distribution is required for various points in space. We propose a principle for distinguishing signals from SPNs of different diameters, which exploits the offset field concept already used in MPI. We show that precise reconstruction of Magnetization Curve (MC) is the key to precise reconstruction of core diameter distribution, as all information about distribution is stored in the curvature. A Passive Mixer Model is proposed in order to uniquely relate the MC to the intermodulation products in the magnetization spectra. The model does not require small signal assumption and hence does not lose accuracy in the reconstruction under large excitation fields. We show that a number of useful practical conclusions can be drawn from this model.
001005770 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001005770 588__ $$aDataset connected to DataCite
001005770 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b1$$ufzj
001005770 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b2$$ufzj
001005770 773__ $$0PERI:(DE-600)2893231-6$$a10.18416/ijmpi.2023.2303087$$n1$$p2303087$$tInternational journal on magnetic particle imaging$$v9$$x2365-9033$$y2023
001005770 8564_ $$uhttps://juser.fz-juelich.de/record/1005770/files/Paper.pdf$$yOpenAccess
001005770 909CO $$ooai:juser.fz-juelich.de:1005770$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001005770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190282$$aForschungszentrum Jülich$$b0$$kFZJ
001005770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b1$$kFZJ
001005770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b2$$kFZJ
001005770 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001005770 9141_ $$y2023
001005770 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005770 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005770 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001005770 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001005770 920__ $$lyes
001005770 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001005770 980__ $$ajournal
001005770 980__ $$aVDB
001005770 980__ $$aUNRESTRICTED
001005770 980__ $$acontrib
001005770 980__ $$aI:(DE-Juel1)IBI-3-20200312
001005770 9801_ $$aFullTexts