001     1005770
005     20230929112521.0
024 7 _ |a 10.18416/IJMPI.2023.2303087
|2 doi
024 7 _ |a 10.18416/ijmpi.2023.2303087
|2 doi
024 7 _ |a 2128/34228
|2 Handle
037 _ _ |a FZJ-2023-01623
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Bikulov, Timur
|0 P:(DE-Juel1)190282
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Workshop on Magnetic Particle Imaging
|g IWMPI
|c Aachen
|d 2023-03-22 - 2023-03-24
|w Germany
245 _ _ |a Passive mixer model for multi-contrast magnetic particle spectroscopy
260 _ _ |a Lübeck
|c 2023
|b Infinite Science Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680246665_31395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For realizing multi-contrast MPI with different types of SuperParamagnetic Nanoparticles (SPN), reconstruction of the particles’ core diameter distribution is required for various points in space. We propose a principle for distinguishing signals from SPNs of different diameters, which exploits the offset field concept already used in MPI. We show that precise reconstruction of Magnetization Curve (MC) is the key to precise reconstruction of core diameter distribution, as all information about distribution is stored in the curvature. A Passive Mixer Model is proposed in order to uniquely relate the MC to the intermodulation products in the magnetization spectra. The model does not require small signal assumption and hence does not lose accuracy in the reconstruction under large excitation fields. We show that a number of useful practical conclusions can be drawn from this model.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 1
|u fzj
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 2
|u fzj
773 _ _ |a 10.18416/ijmpi.2023.2303087
|0 PERI:(DE-600)2893231-6
|n 1
|p 2303087
|t International journal on magnetic particle imaging
|v 9
|y 2023
|x 2365-9033
856 4 _ |u https://juser.fz-juelich.de/record/1005770/files/Paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1005770
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190282
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128697
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contrib
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21