001005795 001__ 1005795
001005795 005__ 20240712113115.0
001005795 0247_ $$2doi$$a10.1021/acsaem.2c04128
001005795 0247_ $$2Handle$$a2128/34389
001005795 0247_ $$2WOS$$aWOS:000959225800001
001005795 037__ $$aFZJ-2023-01640
001005795 082__ $$a540
001005795 1001_ $$0P:(DE-Juel1)177927$$aWeber, Felix M.$$b0
001005795 245__ $$aEffective Lithium Passivation through Graphite Coating for Lithium Metal Batteries
001005795 260__ $$aWashington, DC$$bACS Publications$$c2023
001005795 3367_ $$2DRIVER$$aarticle
001005795 3367_ $$2DataCite$$aOutput Types/Journal article
001005795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683715705_26273
001005795 3367_ $$2BibTeX$$aARTICLE
001005795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001005795 3367_ $$00$$2EndNote$$aJournal Article
001005795 520__ $$aMetallic lithium reacts with organic solvents, resulting in their decomposition. The prevention of these decomposition reactions is a key aspect enabling the use of metallic lithium as an anode in lithium metal batteries. Scanning electrochemical microscopy (SECM), laser microscopy, and Fourier transform infrared (FT-IR) spectroscopy were used to analyze the effect of a graphite coating on metallic lithium. The graphite layer successfully prevents the agglomeration of decomposition products on the surface. SECM data show that the surface of untreated lithium metal in electrolyte is insulating, but the surface of the graphite coated lithium appears conducting and is therefore not covered by any layer of decomposition products. The protective properties of the graphite layer were proofed using FT-IR data. No significant differences in the spectra evolved during immersion of the sample in the electrolyte. Electrochemical plating experiments and post-mortem analysis revealed that the graphite layer did not result in homogeneous lithium plating depending on the current density. At high currents, no fully covering layer of decomposition products was formed on the surface during plating experiments, indicating a more complex mechanism of solid–electrolyte interface formation.
001005795 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001005795 536__ $$0G:(BMBF)13XP0225B$$aLillint - Thermodynamic and kinetic stability of the Lithium-Liquid Electrolyte Interface (13XP0225B)$$c13XP0225B$$x1
001005795 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001005795 7001_ $$0P:(DE-HGF)0$$aGraff, Karl Martin$$b1
001005795 7001_ $$0P:(DE-HGF)0$$aKohlhaas, Ina$$b2
001005795 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b3$$eCorresponding author
001005795 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.2c04128$$gVol. 6, no. 6, p. 3413 - 3421$$n6$$p3413 - 3421$$tACS applied energy materials$$v6$$x2574-0962$$y2023
001005795 8564_ $$uhttps://juser.fz-juelich.de/record/1005795/files/acsaem.2c04128.pdf$$yOpenAccess
001005795 8767_ $$d2023-04-11$$eHybrid-OA$$jPublish and Read
001005795 909CO $$ooai:juser.fz-juelich.de:1005795$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001005795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177927$$aForschungszentrum Jülich$$b0$$kFZJ
001005795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b3$$kFZJ
001005795 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001005795 9141_ $$y2023
001005795 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001005795 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001005795 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001005795 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001005795 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001005795 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001005795 920__ $$lyes
001005795 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001005795 9801_ $$aAPC
001005795 9801_ $$aFullTexts
001005795 980__ $$ajournal
001005795 980__ $$aVDB
001005795 980__ $$aUNRESTRICTED
001005795 980__ $$aI:(DE-Juel1)IEK-12-20141217
001005795 980__ $$aAPC
001005795 981__ $$aI:(DE-Juel1)IMD-4-20141217