001     1006426
005     20240711114048.0
024 7 _ |a 10.1016/j.nme.2023.101396
|2 doi
024 7 _ |a 2128/34270
|2 Handle
024 7 _ |a WOS:000990102500001
|2 WOS
037 _ _ |a FZJ-2023-01661
082 _ _ |a 624
100 1 _ |a Dasbach, Stefan
|0 P:(DE-Juel1)176921
|b 0
|e Corresponding author
245 _ _ |a Towards fast surrogate models for interpolation of tokamak edge plasmas
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1681202262_13485
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a One of the major design limitations for tokamak fusion reactors is the heat load that can be sustained by the materials at the divertor target. Developing a full understanding of how machine or operation parameters affect the conditions at the divertor requires an enormous number of simulations. A promising approach to circumvent this is to use machine learning models trained on simulation data as surrogate models. Once trained such surrogate models can make fast predictions for any scenario in the design parameter space. In future such simulation based surrogate models could be used in system codes for rapid design studies of future fusion power plants. This work presents the first steps towards the development of such surrogate models for plasma exhaust and the datasets required for their training. Machine learning models like neural networks usually require several thousand data points for training, but the exact amount of data required varies from case to case. Due to the long runtimes of simulations we aim at finding the minimal amount of training data required. A preliminary dataset based on SOLPS-ITER simulations with varying tokamak design parameters, including the major radius, magnetic field strength and neutral density is constructed. To be able to generate more training data within reasonable computation time the simulations in the dataset use fluid neutral simulations and no fluid drift effects. The dataset is used to train a simple neural network and Gradient Boosted Regression Trees and test how the performance depends on the number of training simulations.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wiesen, Sven
|0 P:(DE-Juel1)5247
|b 1
773 _ _ |a 10.1016/j.nme.2023.101396
|g Vol. 34, p. 101396 -
|0 PERI:(DE-600)2808888-8
|p 101396 -
|t Nuclear materials and energy
|v 34
|y 2023
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/1006426/files/1-s2.0-S2352179123000352-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006426
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5247
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL MATER ENERGY : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:15Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-05-02T08:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21