001006574 001__ 1006574 001006574 005__ 20240712084533.0 001006574 0247_ $$2doi$$a10.1002/solr.202201051 001006574 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01722 001006574 0247_ $$2WOS$$aWOS:000921397400001 001006574 037__ $$aFZJ-2023-01722 001006574 082__ $$a600 001006574 1001_ $$0P:(DE-Juel1)179456$$aGebrewold, Habtamu Tsegaye$$b0$$eCorresponding author 001006574 245__ $$aUnderstanding Silicon Heterojunction Solar Cells with nc‐SiC/SiO 2 as an Alternate Transparent Passivating Front Contact and Computational Design Optimization 001006574 260__ $$aWeinheim$$bWiley-VCH$$c2023 001006574 3367_ $$2DRIVER$$aarticle 001006574 3367_ $$2DataCite$$aOutput Types/Journal article 001006574 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700574434_3936 001006574 3367_ $$2BibTeX$$aARTICLE 001006574 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001006574 3367_ $$00$$2EndNote$$aJournal Article 001006574 520__ $$aThe potential performance of silicon heterojunction solar cells applying transparent passivating contact (TPC) at the front side, based on a nc-SiC:H/SiO2 layer stack, is modeled and investigated. Herein, a complete multiscale electro-optical device model of TPC solar cells is developed. The model is then used to understand and analyze such cells and search for potential conversion efficiency improvement paths. The influences of contact layer thicknesses and other properties on device performance are studied. An algorithm-based optimization of cell electro-optical performance is performed. It is implemented by coupling a genetic algorithm with a finite element method-based TPC solar cell device model. Optimum front contact layer thicknesses are calculated. For optically optimized TPC contact layer thicknesses, an optical improvement of around 0.5 mA cm² is found. Moreover, for complete electro-optical optimization of TPC layers, about 0.27% absolute value increment in power conversion efficiency is calculated. At the rear side, proper designing of optimizing carrier transport using active dopant concentration of p-type a-Si:H layer and indium tin oxide layer has shown a potential to reach power conversion efficiency beyond 25%. 001006574 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0 001006574 536__ $$0G:(BMWi)0324198D$$aVerbundvorhaben: TuKaN - Tunnelkontakte auf N-Typ: für die Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer und plasmaunterstützter chemischer Gasphasenab (0324198D)$$c0324198D$$x1 001006574 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001006574 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b1 001006574 7001_ $$0P:(DE-Juel1)178049$$aQiu, Kaifu$$b2 001006574 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b3$$ufzj 001006574 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b4$$ufzj 001006574 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202201051$$gVol. 7, no. 7, p. 2201051$$n7$$p2201051$$tSolar RRL$$v7$$x2367-198X$$y2023 001006574 8564_ $$uhttps://juser.fz-juelich.de/record/1006574/files/Final_Paper.pdf$$yOpenAccess 001006574 8767_ $$d2023-11-19$$eHybrid-OA$$jDEAL 001006574 909CO $$ooai:juser.fz-juelich.de:1006574$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 001006574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179456$$aForschungszentrum Jülich$$b0$$kFZJ 001006574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b1$$kFZJ 001006574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b3$$kFZJ 001006574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b4$$kFZJ 001006574 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 001006574 9141_ $$y2023 001006574 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001006574 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001006574 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001006574 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 001006574 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16 001006574 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 001006574 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-16$$wger 001006574 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16 001006574 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001006574 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27 001006574 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2023-10-27 001006574 920__ $$lyes 001006574 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0 001006574 9801_ $$aAPC 001006574 9801_ $$aFullTexts 001006574 980__ $$ajournal 001006574 980__ $$aVDB 001006574 980__ $$aUNRESTRICTED 001006574 980__ $$aI:(DE-Juel1)IEK-5-20101013 001006574 980__ $$aAPC 001006574 981__ $$aI:(DE-Juel1)IMD-3-20101013