001     1006574
005     20240712084533.0
024 7 _ |a 10.1002/solr.202201051
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01722
|2 datacite_doi
024 7 _ |a WOS:000921397400001
|2 WOS
037 _ _ |a FZJ-2023-01722
082 _ _ |a 600
100 1 _ |a Gebrewold, Habtamu Tsegaye
|0 P:(DE-Juel1)179456
|b 0
|e Corresponding author
245 _ _ |a Understanding Silicon Heterojunction Solar Cells with nc‐SiC/SiO 2 as an Alternate Transparent Passivating Front Contact and Computational Design Optimization
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1700574434_3936
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The potential performance of silicon heterojunction solar cells applying transparent passivating contact (TPC) at the front side, based on a nc-SiC:H/SiO2 layer stack, is modeled and investigated. Herein, a complete multiscale electro-optical device model of TPC solar cells is developed. The model is then used to understand and analyze such cells and search for potential conversion efficiency improvement paths. The influences of contact layer thicknesses and other properties on device performance are studied. An algorithm-based optimization of cell electro-optical performance is performed. It is implemented by coupling a genetic algorithm with a finite element method-based TPC solar cell device model. Optimum front contact layer thicknesses are calculated. For optically optimized TPC contact layer thicknesses, an optical improvement of around 0.5 mA cm² is found. Moreover, for complete electro-optical optimization of TPC layers, about 0.27% absolute value increment in power conversion efficiency is calculated. At the rear side, proper designing of optimizing carrier transport using active dopant concentration of p-type a-Si:H layer and indium tin oxide layer has shown a potential to reach power conversion efficiency beyond 25%.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben: TuKaN - Tunnelkontakte auf N-Typ: für die Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer und plasmaunterstützter chemischer Gasphasenab (0324198D)
|0 G:(BMWi)0324198D
|c 0324198D
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 1
700 1 _ |a Qiu, Kaifu
|0 P:(DE-Juel1)178049
|b 2
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 3
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 4
|u fzj
773 _ _ |a 10.1002/solr.202201051
|g Vol. 7, no. 7, p. 2201051
|0 PERI:(DE-600)2882014-9
|n 7
|p 2201051
|t Solar RRL
|v 7
|y 2023
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/1006574/files/Final_Paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006574
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179456
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21