001 | 1006574 | ||
005 | 20240712084533.0 | ||
024 | 7 | _ | |a 10.1002/solr.202201051 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-01722 |2 datacite_doi |
024 | 7 | _ | |a WOS:000921397400001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01722 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Gebrewold, Habtamu Tsegaye |0 P:(DE-Juel1)179456 |b 0 |e Corresponding author |
245 | _ | _ | |a Understanding Silicon Heterojunction Solar Cells with nc‐SiC/SiO 2 as an Alternate Transparent Passivating Front Contact and Computational Design Optimization |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1700574434_3936 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The potential performance of silicon heterojunction solar cells applying transparent passivating contact (TPC) at the front side, based on a nc-SiC:H/SiO2 layer stack, is modeled and investigated. Herein, a complete multiscale electro-optical device model of TPC solar cells is developed. The model is then used to understand and analyze such cells and search for potential conversion efficiency improvement paths. The influences of contact layer thicknesses and other properties on device performance are studied. An algorithm-based optimization of cell electro-optical performance is performed. It is implemented by coupling a genetic algorithm with a finite element method-based TPC solar cell device model. Optimum front contact layer thicknesses are calculated. For optically optimized TPC contact layer thicknesses, an optical improvement of around 0.5 mA cm² is found. Moreover, for complete electro-optical optimization of TPC layers, about 0.27% absolute value increment in power conversion efficiency is calculated. At the rear side, proper designing of optimizing carrier transport using active dopant concentration of p-type a-Si:H layer and indium tin oxide layer has shown a potential to reach power conversion efficiency beyond 25%. |
536 | _ | _ | |a 1213 - Cell Design and Development (POF4-121) |0 G:(DE-HGF)POF4-1213 |c POF4-121 |f POF IV |x 0 |
536 | _ | _ | |a Verbundvorhaben: TuKaN - Tunnelkontakte auf N-Typ: für die Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer und plasmaunterstützter chemischer Gasphasenab (0324198D) |0 G:(BMWi)0324198D |c 0324198D |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bittkau, Karsten |0 P:(DE-Juel1)130219 |b 1 |
700 | 1 | _ | |a Qiu, Kaifu |0 P:(DE-Juel1)178049 |b 2 |
700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)130285 |b 3 |u fzj |
700 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 4 |u fzj |
773 | _ | _ | |a 10.1002/solr.202201051 |g Vol. 7, no. 7, p. 2201051 |0 PERI:(DE-600)2882014-9 |n 7 |p 2201051 |t Solar RRL |v 7 |y 2023 |x 2367-198X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1006574/files/Final_Paper.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1006574 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)179456 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130219 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130285 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130233 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1213 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a DEAL: Wiley 2019 |0 PC:(DE-HGF)0120 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-16 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-16 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-16 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOL RRL : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SOL RRL : 2022 |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|