001     1006599
005     20231027114400.0
024 7 _ |a 10.1063/5.0136367
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1527-2400
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 2128/34274
|2 Handle
024 7 _ |a 37012783
|2 pmid
024 7 _ |a WOS:000956161100002
|2 WOS
037 _ _ |a FZJ-2023-01740
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Vögl, F.
|0 P:(DE-Juel1)176257
|b 0
245 _ _ |a Multi-angle in situ dynamic light scattering at a neutron spin echo spectrometer
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2023
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698057284_15069
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A new sample environment, called Bio-Oven, has been built for the Neutron Spin Echo (NSE) SpectrometerJ-NSE Phoenix. It provides active temperature control and the possibility to perform Dynamic Light Scattering(DLS) measurements during the neutron measurement. DLS provides diffusion coefficients of the dissolvednanoparticles and thus one can monitor the aggregation state of the sample on a time scale of minutes duringthe spin echo measurement times on the order of days. This approach helps to validate the NSE data or toreplace the sample when its aggregation state influences the spin echo measurement results. The new Bio-Ovenis an in situ DLS setup based on optical fibers decoupling the free space optics around the sample cuvettein a lightproof casing from the laser sources and the detectors. It collects light from three scattering anglessimultaneously. Six different values of momentum transfer can be accessed by switching between two differentlaser colors. Test experiments were performed with silica nanoparticles with diameters ranging from 20 nm upto 300 nm. Their hydrodynamic radii were determined from DLS measurements and compared with the onesobtained by a commercial particle sizer. It was demonstrated that also the static light scattering signal can beprocessed and gives meaningful results. The protein sample apomyoglobin was used for a long-term test and ina first neutron measurement using the new Bio-Oven. The results prove that the aggregation state of the samplecan be followed using in situ DLS along with the neutron measurement.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 2
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e J-NSE: Neutron spin-echo spectrometer
|f NL2ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)J-NSE-20140101
|5 EXP:(DE-MLZ)J-NSE-20140101
|6 EXP:(DE-MLZ)NL2ao-20140101
|x 0
700 1 _ |a Balacescu, L.
|0 P:(DE-Juel1)171559
|b 1
700 1 _ |a Holderer, O.
|0 P:(DE-Juel1)130718
|b 2
700 1 _ |a Pasini, S.
|0 P:(DE-Juel1)145049
|b 3
700 1 _ |a Staringer, S.
|0 P:(DE-Juel1)130984
|b 4
|u fzj
700 1 _ |a Brandl, G.
|0 P:(DE-Juel1)166109
|b 5
700 1 _ |a Ossovyi, V.
|0 P:(DE-Juel1)130875
|b 6
|u fzj
700 1 _ |a Feilbach, H.
|0 P:(DE-Juel1)130635
|b 7
|u fzj
700 1 _ |a Müller-Buschbaum, P.
|0 0000-0002-9566-6088
|b 8
700 1 _ |a Stadler, A. M.
|0 P:(DE-Juel1)140278
|b 9
700 1 _ |a Fitter, J.
|0 P:(DE-Juel1)131961
|b 10
700 1 _ |a Schrader, T. E.
|0 P:(DE-Juel1)138266
|b 11
|e Corresponding author
773 _ _ |a 10.1063/5.0136367
|g Vol. 94, no. 3, p. 034106 -
|0 PERI:(DE-600)1472905-2
|n 3
|p 034106
|t Review of scientific instruments
|v 94
|y 2023
|x 0034-6748
856 4 _ |u https://juser.fz-juelich.de/record/1006599/files/5.0136367.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1006599/files/MainTS.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006599
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145049
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166109
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130875
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)140278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)138266
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: AIP Publishing 2021
|0 PC:(DE-HGF)0102
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21