001 | 1006605 | ||
005 | 20240313095011.0 | ||
037 | _ | _ | |a FZJ-2023-01742 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Nestler, Sandra |0 P:(DE-Juel1)174585 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Seminar Talk, Barak Lab |c Haifa |w Israel |
245 | _ | _ | |a Neural networks learning structure in temporal signals |f 2023-02-28 - |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Talk (non-conference) |b talk |m talk |0 PUB:(DE-HGF)31 |s 1683183034_28115 |2 PUB:(DE-HGF) |x Invited |
336 | 7 | _ | |a Other |2 DINI |
520 | _ | _ | |a Cortical networks are strongly recurrent, and neurons have intrinsic temporal dynamics. This sets them apart from deep feed-forward networks. Despite the tremendous progress in the application of feed-forward networks and their theoretical understanding, it remains unclear how the interplay of recurrence and non-linearities in recurrent cortical networks contributes to their function. The purpose of this work is to present a solvable recurrent network model that links to feed forward networks. By perturbative methods we transform the time-continuous,recurrent dynamics into an effective feed-forward structure of linear and non-linear temporal kernels. The resulting analytical expressions allow us to build optimal time-series classifiers from random reservoir networks. Firstly, this allows us to optimize not only the readout vectors, but also the input projection, demonstrating a strong potential performance gain. Secondly, the analysis exposes how the second order stimulus statistics is a crucial element that interacts with the non-linearity of the dynamics and boosts performance. |
536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 1 |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 2 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 4 |
536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 5 |
536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 6 |
536 | _ | _ | |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002) |0 G:(DE-82)EXS-SF-neuroIC002 |c EXS-SF-neuroIC002 |x 7 |
700 | 1 | _ | |a Keup, Christian |0 P:(DE-Juel1)171384 |b 1 |u fzj |
700 | 1 | _ | |a Dahmen, David |0 P:(DE-Juel1)156459 |b 2 |u fzj |
700 | 1 | _ | |a Gilson, Matthieu |0 P:(DE-Juel1)184621 |b 3 |
700 | 1 | _ | |a Rauhut, Holger |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 5 |u fzj |
700 | 1 | _ | |a Bartolomaeus, Wiebke |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Boutaib, Youness |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Bouss, Peter |0 P:(DE-Juel1)178725 |b 8 |u fzj |
700 | 1 | _ | |a Merger, Claudia Lioba |0 P:(DE-Juel1)184900 |b 9 |u fzj |
700 | 1 | _ | |a Fischer, Kirsten |0 P:(DE-Juel1)180150 |b 10 |u fzj |
700 | 1 | _ | |a Rene, Alexandre |0 P:(DE-Juel1)178936 |b 11 |u fzj |
700 | 1 | _ | |a Schirrmeister, Robin |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Ball, Tonio |0 P:(DE-HGF)0 |b 13 |
909 | C | O | |o oai:juser.fz-juelich.de:1006605 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174585 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171384 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156459 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144806 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)178725 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)184900 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)180150 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)178936 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 2 |
914 | 1 | _ | |y 2023 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
980 | _ | _ | |a talk |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|