001006631 001__ 1006631
001006631 005__ 20240712113106.0
001006631 0247_ $$2doi$$a10.1021/acssuschemeng.2c07556
001006631 0247_ $$2Handle$$a2128/34341
001006631 0247_ $$2WOS$$aWOS:000951735700001
001006631 037__ $$aFZJ-2023-01764
001006631 082__ $$a540
001006631 1001_ $$0P:(DE-Juel1)176118$$aYe, Ruijie$$b0$$eCorresponding author
001006631 245__ $$aAqueous Processing of LiCoO 2 –Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 Composite Cathode for High-Capacity Solid-State Lithium Batteries
001006631 260__ $$aWashington, DC$$bACS Publ.$$c2023
001006631 3367_ $$2DRIVER$$aarticle
001006631 3367_ $$2DataCite$$aOutput Types/Journal article
001006631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682058579_7899
001006631 3367_ $$2BibTeX$$aARTICLE
001006631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006631 3367_ $$00$$2EndNote$$aJournal Article
001006631 520__ $$aTo fabricate ceramic composite cathodes LiCoO2–Li6.6La3Zr1.6Ta0.4O12 (LCO-LLZTO) on an industrial scale, a water-based tape-casting process was developed, which is scalable and environmentally friendly. Additionally, the cosintering behavior of the two materials, often leading to poor electrochemical performance, was optimized via a Li2O-rich atmosphere. The resulting dense, free-standing, and phase-pure LCO-LLZTO mixed cathodes were assembled into full cells using a dual-layer solid polymer-ceramic separator and an In–Li anode. These cells show very high utilization rates for LCO of approximately 90% at a high areal capacity of over 3 mAh cm–2, demonstrating the potential of water-based tape-casting for a scalable and sustainable manufacturing of oxide-ceramic based solid-state Li batteries.
001006631 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001006631 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006631 7001_ $$0P:(DE-Juel1)174298$$aIhrig, Martin$$b1
001006631 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b2$$ufzj
001006631 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b3
001006631 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4
001006631 773__ $$0PERI:(DE-600)2695697-4$$a10.1021/acssuschemeng.2c07556$$gVol. 11, no. 13, p. 5184 - 5194$$n13$$p5184 - 5194$$tACS sustainable chemistry & engineering$$v11$$x2168-0485$$y2023
001006631 8564_ $$uhttps://juser.fz-juelich.de/record/1006631/files/Aqueous%20Processing%20of%20LiCoO%202%20%E2%80%93Li%206.6%20La%203%20Zr%201.6%20Ta%200.4%20O%2012%20Composite%20Cathode%20for%20High-Capacity%20Solid-State%20Lithium%20Batteries.pdf$$yOpenAccess
001006631 8564_ $$uhttps://juser.fz-juelich.de/record/1006631/files/acssuschemeng.2c07556.pdf$$yOpenAccess
001006631 8767_ $$d2023-04-11$$eHybrid-OA$$jPublish and Read
001006631 909CO $$ooai:juser.fz-juelich.de:1006631$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001006631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176118$$aForschungszentrum Jülich$$b0$$kFZJ
001006631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174298$$aForschungszentrum Jülich$$b1$$kFZJ
001006631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b2$$kFZJ
001006631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b3$$kFZJ
001006631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b4$$kFZJ
001006631 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001006631 9141_ $$y2023
001006631 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001006631 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001006631 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001006631 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001006631 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001006631 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001006631 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001006631 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SUSTAIN CHEM ENG : 2022$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001006631 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SUSTAIN CHEM ENG : 2022$$d2023-10-26
001006631 920__ $$lyes
001006631 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001006631 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
001006631 9801_ $$aAPC
001006631 9801_ $$aFullTexts
001006631 980__ $$ajournal
001006631 980__ $$aVDB
001006631 980__ $$aUNRESTRICTED
001006631 980__ $$aI:(DE-Juel1)IEK-1-20101013
001006631 980__ $$aI:(DE-Juel1)IEK-12-20141217
001006631 980__ $$aAPC
001006631 981__ $$aI:(DE-Juel1)IMD-4-20141217
001006631 981__ $$aI:(DE-Juel1)IMD-2-20101013