001     1006631
005     20240712113106.0
024 7 _ |a 10.1021/acssuschemeng.2c07556
|2 doi
024 7 _ |a 2128/34341
|2 Handle
024 7 _ |a WOS:000951735700001
|2 WOS
037 _ _ |a FZJ-2023-01764
082 _ _ |a 540
100 1 _ |a Ye, Ruijie
|0 P:(DE-Juel1)176118
|b 0
|e Corresponding author
245 _ _ |a Aqueous Processing of LiCoO 2 –Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 Composite Cathode for High-Capacity Solid-State Lithium Batteries
260 _ _ |a Washington, DC
|c 2023
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1682058579_7899
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To fabricate ceramic composite cathodes LiCoO2–Li6.6La3Zr1.6Ta0.4O12 (LCO-LLZTO) on an industrial scale, a water-based tape-casting process was developed, which is scalable and environmentally friendly. Additionally, the cosintering behavior of the two materials, often leading to poor electrochemical performance, was optimized via a Li2O-rich atmosphere. The resulting dense, free-standing, and phase-pure LCO-LLZTO mixed cathodes were assembled into full cells using a dual-layer solid polymer-ceramic separator and an In–Li anode. These cells show very high utilization rates for LCO of approximately 90% at a high areal capacity of over 3 mAh cm–2, demonstrating the potential of water-based tape-casting for a scalable and sustainable manufacturing of oxide-ceramic based solid-state Li batteries.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ihrig, Martin
|0 P:(DE-Juel1)174298
|b 1
700 1 _ |a Figgemeier, Egbert
|0 P:(DE-Juel1)165182
|b 2
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 3
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 4
773 _ _ |a 10.1021/acssuschemeng.2c07556
|g Vol. 11, no. 13, p. 5184 - 5194
|0 PERI:(DE-600)2695697-4
|n 13
|p 5184 - 5194
|t ACS sustainable chemistry & engineering
|v 11
|y 2023
|x 2168-0485
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006631/files/Aqueous%20Processing%20of%20LiCoO%202%20%E2%80%93Li%206.6%20La%203%20Zr%201.6%20Ta%200.4%20O%2012%20Composite%20Cathode%20for%20High-Capacity%20Solid-State%20Lithium%20Batteries.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006631/files/acssuschemeng.2c07556.pdf
909 C O |o oai:juser.fz-juelich.de:1006631
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174298
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145623
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SUSTAIN CHEM ENG : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21