001     1006634
005     20240712113107.0
024 7 _ |a 10.1021/acsaem.3c00571
|2 doi
024 7 _ |a 10.34734/FZJ-2023-01767
|2 datacite_doi
024 7 _ |a WOS:000973157300001
|2 WOS
037 _ _ |a FZJ-2023-01767
082 _ _ |a 540
100 1 _ |a Chiou, Min-Huei
|0 P:(DE-Juel1)176524
|b 0
245 _ _ |a Selection of Polymer Segment Species Matters for Electrolyte Properties and Performance in Lithium Metal Batteries
260 _ _ |a Washington, DC
|c 2023
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705059929_25526
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Control of homogeneous lithium deposition governs prospects of advanced cell development and practical applications of high-energy-density lithium metal batteries. Polymer electrolytes are thus explored and employed to mitigate the growth of high-surface-area lithium species while enhancing the reversibility of the lithium reservoir upon cell cycling. Herein, an in-depth understanding of the distribution of membrane properties and lithium deposition behavior affected by the selection of polymer segment species is derived. It is demonstrated that severely localized lithium deposits featuring needle-like morphologies may be readily observed when electrostatic fields (or partial charges) and the amount of Li+ coordinators of the primary and secondary polymer segment species appear rather dissimilar, leading to a sudden cell failure at early stages of cell operation. In comparison, employment of optimized copolymer electrolytes enables superior cell performance at 1C even with thicker cathodes (6.3 mg cm–2). Additionally, the improvement of cell-cycling stability due to enhancement of similarity of dipole moments and partial charge distributions among copolymer segments are also demonstrated for different polymer systems, contributing to avoidance of undesired lithium protrusions, also reflecting a viable concept for the design of future copolymer electrolytes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Verweyen, Elisabeth
|0 P:(DE-Juel1)176525
|b 1
|u fzj
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 2
700 1 _ |a Wichmann, Lennart
|0 P:(DE-Juel1)187473
|b 3
|u fzj
700 1 _ |a Schmidt, Christina
|0 P:(DE-Juel1)185885
|b 4
|u fzj
700 1 _ |a Neuhaus, Kerstin
|0 P:(DE-Juel1)181017
|b 5
|u fzj
700 1 _ |a Choudhary, Aditya
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bedrov, Dmitry
|0 0000-0002-3884-3308
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acsaem.3c00571
|g p. acsaem.3c00571
|0 PERI:(DE-600)2916551-9
|n 8
|p 4422–4436
|t ACS applied energy materials
|v 6
|y 2023
|x 2574-0962
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006634/files/Chiou2023_accepted.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1006634/files/chiou-et-al-2023-selection-of-polymer-segment-species-matters-for-electrolyte-properties-and-performance-in-lithium.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1006634/files/chiou-et-al-2023-selection-of-polymer-segment-species-matters-for-electrolyte-properties-and-performance-in-lithium.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1006634/files/chiou-et-al-2023-selection-of-polymer-segment-species-matters-for-electrolyte-properties-and-performance-in-lithium.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1006634/files/chiou-et-al-2023-selection-of-polymer-segment-species-matters-for-electrolyte-properties-and-performance-in-lithium.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1006634/files/chiou-et-al-2023-selection-of-polymer-segment-species-matters-for-electrolyte-properties-and-performance-in-lithium.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1006634
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176524
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176525
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187473
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185885
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)181017
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 2
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21