001     1006638
005     20240116205228.0
024 7 _ |a 10.3390/pharmaceutics15041210
|2 doi
024 7 _ |a 2128/34277
|2 Handle
024 7 _ |a 37111695
|2 pmid
024 7 _ |a WOS:000977537800001
|2 WOS
037 _ _ |a FZJ-2023-01771
082 _ _ |a 610
100 1 _ |a Hoffmann, Marco
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Smuggling on the Nanoscale—Fusogenic Liposomes Enable Efficient RNA-Transfer with Negligible Immune Response In Vitro and In Vivo
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705390242_14102
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The efficient and biocompatible transfer of nucleic acids into mammalian cells for research applications or medical purposes is a long-standing, challenging task. Viral transduction is the most efficient transfer system, but often entails high safety levels for research and potential health impairments for patients in medical applications. Lipo- or polyplexes are commonly used transfer systems but result in comparably low transfer efficiencies. Moreover, inflammatory responses caused by cytotoxic side effects were reported for these transfer methods. Often accountable for these effects are various recognition mechanisms for transferred nucleic acids. Using commercially available fusogenic liposomes (Fuse-It-mRNA), we established highly efficient and fully biocompatible transfer of RNA molecules for in vitro as well as in vivo applications. We demonstrated bypassing of endosomal uptake routes and, therefore, of pattern recognition receptors that recognize nucleic acids with high efficiency. This may underlie the observed almost complete abolishment of inflammatory cytokine responses. RNA transfer experiments into zebrafish embryos and adult animals fully confirmed the functional mechanism and the wide range of applications from single cells to organisms.
536 _ _ |a 5243 - Information Processing in Distributed Systems (POF4-524)
|0 G:(DE-HGF)POF4-5243
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gerlach, Sven
|0 P:(DE-Juel1)171121
|b 1
|u fzj
700 1 _ |a Takamiya, Masanari
|0 0000-0002-6524-5813
|b 2
700 1 _ |a Tarazi, Samar
|0 P:(DE-Juel1)176880
|b 3
700 1 _ |a Hersch, Nils
|0 P:(DE-Juel1)128815
|b 4
|u fzj
700 1 _ |a Csiszár, Agnes
|0 P:(DE-Juel1)128805
|b 5
|u fzj
700 1 _ |a Springer, Ronald
|0 P:(DE-Juel1)144199
|b 6
|u fzj
700 1 _ |a Dreissen, Georg
|0 P:(DE-Juel1)129308
|b 7
|u fzj
700 1 _ |a Scharr, Hanno
|b 8
700 1 _ |a Rastegar, Sepand
|0 0000-0003-4411-5646
|b 9
700 1 _ |a Beil, Tanja
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Strähle, Uwe
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 12
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 13
|e Corresponding author
773 _ _ |a 10.3390/pharmaceutics15041210
|g Vol. 15, no. 4, p. 1210 -
|0 PERI:(DE-600)2527217-2
|n 4
|p 1210 -
|t Pharmaceutics
|v 15
|y 2023
|x 1999-4923
856 4 _ |u https://juser.fz-juelich.de/record/1006638/files/pharmaceutics-15-01210.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1006638
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176880
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128815
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)128817
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5243
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHARMACEUTICS : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-18T07:37:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-18T07:37:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-18T07:37:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHARMACEUTICS : 2022
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-2-20200312
|k IBI-2
|l Mechanobiologie
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-2-20200312
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21