001006788 001__ 1006788
001006788 005__ 20240116084315.0
001006788 0247_ $$2doi$$a10.1016/j.vacuum.2023.112085
001006788 0247_ $$2ISSN$$a0042-207X
001006788 0247_ $$2ISSN$$a1879-2715
001006788 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-01841
001006788 0247_ $$2WOS$$aWOS:000983551100001
001006788 037__ $$aFZJ-2023-01841
001006788 082__ $$a530
001006788 1001_ $$00000-0002-5414-5497$$aLee, Ying-Chieh$$b0$$eCorresponding author
001006788 245__ $$aStudy of Ni–Cr / CrN bilayer thin films resistor prepared by magnetron sputtering
001006788 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001006788 3367_ $$2DRIVER$$aarticle
001006788 3367_ $$2DataCite$$aOutput Types/Journal article
001006788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702463527_27254
001006788 3367_ $$2BibTeX$$aARTICLE
001006788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001006788 3367_ $$00$$2EndNote$$aJournal Article
001006788 520__ $$aIn this study, we prepare bilayer Ni–Cr/CrN films. A Ni–Cr resistive thin film was prepared by DC sputtering from targets of Ni0.8-Cr0.2 casting alloy. A CrN protection thin film was prepared based on optimum sputtering conditions of the Ni–Cr film, which was made by DC and RF magnetron co-sputtering from targets of Ni0.8-Cr0.2 casting alloy and chromium. The electrical properties and microstructures of the resistive films at different annealing temperatures were investigated. The phase evolution, microstructural and composition of Ni–Cr and NiCr/CrN films were characterized by X-ray diffraction (XRD), field-emission transmission electron microscopy (HRTEM) and auger electron spectroscopy (AES). The results indicated that the resistivity of the bilayer Ni–Cr/CrN films is higher than Ni–Cr films. When the annealing temperature was set to 300 °C, the bilayer Ni–Cr/CrN films exhibited a resistivity ∼303 μΩ cm with the smallest temperature coefficient of resistance (TCR) of −3 ppm/°C. However, the Ni–Cr films that annealed at 300 °C showed a resistivity of ∼210 μΩ cm, with a TCR of 13 ppm/°C. In addition, the TCR and resistivity variation rate of CrN protective coating layer on the Ni–Cr films after high temperature testing at 150 °C up to 100 h was done. The results show that the average change rate of the TCR for bilayer Ni–Cr/CrN films is lower than single Ni–Cr films.
001006788 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001006788 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001006788 7001_ $$0P:(DE-HGF)0$$aYen, Voon Choong$$b1
001006788 7001_ $$0P:(DE-Juel1)130894$$aPithan, Christian$$b2$$ufzj
001006788 7001_ $$00000-0002-5164-3175$$aJan, Jhen-Hau$$b3
001006788 773__ $$0PERI:(DE-600)1479044-0$$a10.1016/j.vacuum.2023.112085$$gVol. 213, p. 112085 -$$p112085 -$$tVacuum$$v213$$x0042-207X$$y2023
001006788 8564_ $$uhttps://juser.fz-juelich.de/record/1006788/files/NiCr-CrN%20thin%20film%20Figure20230129.doc$$yOpenAccess
001006788 8564_ $$uhttps://juser.fz-juelich.de/record/1006788/files/NiCr-CrN%20thin%20film%20manuscript20230207.doc$$yOpenAccess
001006788 8564_ $$uhttps://juser.fz-juelich.de/record/1006788/files/Pithan-23-02.pdf$$yRestricted
001006788 909CO $$ooai:juser.fz-juelich.de:1006788$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001006788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130894$$aForschungszentrum Jülich$$b2$$kFZJ
001006788 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001006788 9141_ $$y2023
001006788 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001006788 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001006788 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001006788 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-19$$wger
001006788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVACUUM : 2022$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19
001006788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-19
001006788 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001006788 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001006788 980__ $$ajournal
001006788 980__ $$aVDB
001006788 980__ $$aUNRESTRICTED
001006788 980__ $$aI:(DE-Juel1)PGI-7-20110106
001006788 980__ $$aI:(DE-82)080009_20140620
001006788 9801_ $$aFullTexts