Home > Workflow collections > Publication Charges > Heat Treatment of High-Performance Ferritic (HiperFer) Steels > print |
001 | 1007173 | ||
005 | 20250203103450.0 | ||
024 | 7 | _ | |a 10.3390/ma16093500 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-01971 |2 datacite_doi |
024 | 7 | _ | |a 37176382 |2 pmid |
024 | 7 | _ | |a WOS:000987643800001 |2 WOS |
037 | _ | _ | |a FZJ-2023-01971 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Kuhn, Bernd |0 P:(DE-Juel1)129742 |b 0 |e Corresponding author |
245 | _ | _ | |a Heat Treatment of High-Performance Ferritic (HiperFer) Steels |
260 | _ | _ | |a Basel |c 2023 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714558758_3375 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a High-performance Ferritic (HiperFer) steels are a novel class of heat-resistant, fully ferritic, Laves phase precipitation hardened materials. In comparison to conventional creep strength-enhanced 9–12 wt.% Cr ferritic–martensitic steels, HiperFer features increased mechanical strength, based on a thermodynamically stable distribution of small (Fe,Cr,Si)2(Nb,W) Laves phase precipitates, and—owing to its increased chromium content of 17 wt.%—improved resistance to steam oxidation, resulting in superior temperature capability up to 650 °C. Previous publications focused on alloying, thermomechanical processing, and basic mechanical property evaluation. The current paper concentrates on the effect of heat treatment on microstructural features, especially Laves phase population, and the resulting creep performance. At 650 °C and a creep stress of 100 MPa, an increase in rupture time of about 100% was achieved in comparison to the solely thermomechanically processed state. |
536 | _ | _ | |a 1243 - Thermal Energy Storage (POF4-124) |0 G:(DE-HGF)POF4-1243 |c POF4-124 |f POF IV |x 0 |
536 | _ | _ | |a Hochtemperatur- und Energiematerialien (03EK3032) |0 G:(BMBF)03EK3032 |c 03EK3032 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Talik, Michal |0 P:(DE-HGF)0 |b 1 |
773 | _ | _ | |a 10.3390/ma16093500 |g Vol. 16, no. 9, p. 3500 - |0 PERI:(DE-600)2487261-1 |n 9 |p 3500 - |t Materials |v 16 |y 2023 |x 1996-1944 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1007173/files/materials-16-03500.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1007173 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129742 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-124 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Hochtemperaturtechnologien |9 G:(DE-HGF)POF4-1243 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-03-30 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-03-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-03-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-03-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATERIALS : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:01:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:01:11Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:01:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-25 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-25 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|