001007368 001__ 1007368
001007368 005__ 20240712112839.0
001007368 0247_ $$2doi$$a10.3390/en16093827
001007368 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02033
001007368 0247_ $$2WOS$$aWOS:000987332400001
001007368 037__ $$aFZJ-2023-02033
001007368 082__ $$a620
001007368 1001_ $$0P:(DE-Juel1)190247$$aYu, Shangzhe$$b0$$ufzj
001007368 245__ $$aNumerical Modeling and Simulation of the Solid Oxide Cell Stacks and Metal Interconnect Oxidation with OpenFOAM
001007368 260__ $$aBasel$$bMDPI$$c2023
001007368 3367_ $$2DRIVER$$aarticle
001007368 3367_ $$2DataCite$$aOutput Types/Journal article
001007368 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705667332_8884
001007368 3367_ $$2BibTeX$$aARTICLE
001007368 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007368 3367_ $$00$$2EndNote$$aJournal Article
001007368 520__ $$aSolid oxide cells are capable of efficiently converting various chemical energy carriers to electricity and vice versa. The urgent challenge nowadays is the faster degradation rate compared with other fuel cell/electrolyzer technologies. To understand the degradation mechanisms, simulation of a solid oxide cell is helpful. Since most previous research developed models using commercial software, such as COMSOL and ANSYS Fluent, a gap for knowledge transfer is being gradually formed between academia and industry due to licensing issues. This paper introduces a multiphysics model, developed by a computational code, openFuelCell2. The code is implemented with an open-source library, OpenFOAM. It accounts for momentum transfer, mass transfer, electrochemical reactions and metal interconnect oxidation. The model can precisely predict I–V curves under different temperatures, fuel humidity and operation modes. Comparison between OpenFOAM and COMSOL simulations shows good agreement. The metal interconnect oxidation is modeled, which can predict the thickness of the oxide scale under different protective coatings. Simulations are conducted by assuming an ultra-thin film resistance on the rib surface. It is revealed that coatings fabricated by atmospheric plasma spraying can efficiently prevent metal interconnect oxidation, with a contribution of only 0.53 % to the total degradation rate.
001007368 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001007368 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001007368 536__ $$0G:(BMBF)03SF0621A$$aVerbundvorhaben SOC-Degradation_2 ' Teilvorhaben A (03SF0621A)$$c03SF0621A$$x2
001007368 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007368 7001_ $$0P:(DE-Juel1)168221$$aZhang, Shidong$$b1$$eCorresponding author
001007368 7001_ $$0P:(DE-Juel1)171824$$aSchäfer, Dominik$$b2
001007368 7001_ $$0P:(DE-Juel1)129901$$aPeters, Roland$$b3
001007368 7001_ $$0P:(DE-Juel1)192282$$aKunz, Felix$$b4
001007368 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
001007368 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en16093827$$gVol. 16, no. 9, p. 3827 -$$n9$$p3827 -$$tEnergies$$v16$$x1996-1073$$y2023
001007368 8564_ $$uhttps://juser.fz-juelich.de/record/1007368/files/energies-16-03827-v3.pdf$$yOpenAccess
001007368 8767_ $$d2023-05-10$$eAPC$$jZahlung erfolgt
001007368 909CO $$ooai:juser.fz-juelich.de:1007368$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190247$$aForschungszentrum Jülich$$b0$$kFZJ
001007368 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)190247$$aRWTH Aachen$$b0$$kRWTH
001007368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168221$$aForschungszentrum Jülich$$b1$$kFZJ
001007368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171824$$aForschungszentrum Jülich$$b2$$kFZJ
001007368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129901$$aForschungszentrum Jülich$$b3$$kFZJ
001007368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192282$$aForschungszentrum Jülich$$b4$$kFZJ
001007368 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001007368 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001007368 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001007368 9141_ $$y2023
001007368 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007368 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007368 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007368 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007368 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001007368 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007368 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001007368 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001007368 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007368 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001007368 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:23Z
001007368 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:23Z
001007368 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:23Z
001007368 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2022$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001007368 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
001007368 920__ $$lyes
001007368 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001007368 9801_ $$aAPC
001007368 9801_ $$aFullTexts
001007368 980__ $$ajournal
001007368 980__ $$aVDB
001007368 980__ $$aI:(DE-Juel1)IEK-9-20110218
001007368 980__ $$aAPC
001007368 980__ $$aUNRESTRICTED
001007368 981__ $$aI:(DE-Juel1)IET-1-20110218