001007371 001__ 1007371
001007371 005__ 20250203103455.0
001007371 0247_ $$2doi$$a10.3390/en16083574
001007371 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02036
001007371 0247_ $$2WOS$$aWOS:000980881100001
001007371 037__ $$aFZJ-2023-02036
001007371 082__ $$a620
001007371 1001_ $$0P:(DE-Juel1)173887$$aWang, Kai$$b0$$eCorresponding author$$ufzj
001007371 245__ $$aPhase Field Study of Cr-Oxide Growth Kinetics in the Crofer 22 APU Alloy Supported by Wagner’s Theory
001007371 260__ $$aBasel$$bMDPI$$c2023
001007371 3367_ $$2DRIVER$$aarticle
001007371 3367_ $$2DataCite$$aOutput Types/Journal article
001007371 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714726055_26324
001007371 3367_ $$2BibTeX$$aARTICLE
001007371 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007371 3367_ $$00$$2EndNote$$aJournal Article
001007371 520__ $$aThe Crofer 22 APU alloy is a frequently used metallic material to manufacture interconnects in solid oxide fuel cells. However, the formation and evaporation of Cr2O3 not only increases the electrical resistance but also leads to the Cr-related degradation over the service time. In order to investigate the growth kinetics of Cr-oxide, i.e., Cr2O3, the multi-phase field model coupled with reliable CALPHAD databases is employed. The phase field simulation results are benchmarked with the predictions of Wagner’s theory. Moreover, we evidence the influence of the temperature and Cr concentration on the ferritic matrix phase and the oxygen concentration at the Cr2O3/gas interface on the growth kinetics of Cr-oxide, paving the way for further investigations of Cr-related solid oxide fuel cell degradation processes.
001007371 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001007371 536__ $$0G:(BMBF)03SF0621A$$aVerbundvorhaben SOC-Degradation_2 ' Teilvorhaben A (03SF0621A)$$c03SF0621A$$x1
001007371 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x2
001007371 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007371 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b1
001007371 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en16083574$$gVol. 16, no. 8, p. 3574 -$$n8$$p3574 -$$tEnergies$$v16$$x1996-1073$$y2023
001007371 8564_ $$uhttps://juser.fz-juelich.de/record/1007371/files/energies-16-03574-v2.pdf$$yOpenAccess
001007371 8767_ $$d2023-05-10$$eAPC$$jZahlung erfolgt
001007371 909CO $$ooai:juser.fz-juelich.de:1007371$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001007371 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173887$$aForschungszentrum Jülich$$b0$$kFZJ
001007371 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b1$$kFZJ
001007371 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001007371 9141_ $$y2024
001007371 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001007371 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001007371 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001007371 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001007371 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001007371 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001007371 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001007371 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001007371 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001007371 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001007371 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2022$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:23Z
001007371 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:23Z
001007371 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:23Z
001007371 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001007371 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
001007371 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
001007371 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
001007371 9801_ $$aAPC
001007371 9801_ $$aFullTexts
001007371 980__ $$ajournal
001007371 980__ $$aVDB
001007371 980__ $$aUNRESTRICTED
001007371 980__ $$aI:(DE-Juel1)IEK-2-20101013
001007371 980__ $$aI:(DE-82)080011_20140620
001007371 980__ $$aAPC
001007371 981__ $$aI:(DE-Juel1)IMD-1-20101013