001     1007378
005     20240712113126.0
024 7 _ |a 10.1002/batt.202300045
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02043
|2 datacite_doi
024 7 _ |a WOS:000973613900001
|2 WOS
037 _ _ |a FZJ-2023-02043
082 _ _ |a 540
100 1 _ |a Kortekaas, Luuk
|b 0
245 _ _ |a A Digital Blueprint for 3D‐Printing Lab Scale Aqueous and Organic Redox‐Flow Batteries
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705044617_29447
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As 3D-printing is becoming increasingly accessible, its application towards more sustainable and flexible design strategies for chemical processes also grows substantially. Redox-flow batteries (RFBs) are recognized as one of the possible next generation energy storage solutions, owing to the inherent decoupling of power and energy, yet the capital costs involved produce a high barrier to enter the field. Here, we demonstrate a full digital blueprint for printing one's own RFB, that can enable more (organic chemistry) contributions to the field. At the time of writing, the combined costs of only the RFB cell total around 60 €, which is less than commercially available RFB cells by a great margin. The cyclic voltammetry, impedance spectroscopy and potentiostatic cycling experiments exemplified by the K4[FeII(CN)6]|K3[FeIII(CN)6] redox-pair for aqueous, and ferrocene|ferrocenium for organic electrolytes, validate the stability of the technical lab-scale design and provides benchmark values for reproduction.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fricke, Sebastian
|b 1
700 1 _ |a Korshunov, Aleksandr
|0 0000-0003-4995-0165
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 4
700 1 _ |a Grünebaum, Mariano
|0 P:(DE-Juel1)166392
|b 5
|e Corresponding author
773 _ _ |a 10.1002/batt.202300045
|g p. e202300045
|0 PERI:(DE-600)2897248-X
|n 6
|p e202300045
|t Batteries & supercaps
|v 6
|y 2023
|x 2566-6223
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1007378/files/Batteries%20Supercaps%20-%202023%20-%20Kortekaas%20-%20A%20Digital%20Blueprint%20for%203D%E2%80%90Printing%20Lab%20Scale%20Aqueous%20and%20Organic%20Redox%E2%80%90Flow.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1007378/files/Batteries%20Supercaps%20-%202023%20-%20Kortekaas%20-%20A%20Digital%20Blueprint%20for%203D%E2%80%90Printing%20Lab%20Scale%20Aqueous%20and%20Organic%20Redox%E2%80%90Flow.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1007378/files/Batteries%20Supercaps%20-%202023%20-%20Kortekaas%20-%20A%20Digital%20Blueprint%20for%203D%E2%80%90Printing%20Lab%20Scale%20Aqueous%20and%20Organic%20Redox%E2%80%90Flow.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1007378/files/Batteries%20Supercaps%20-%202023%20-%20Kortekaas%20-%20A%20Digital%20Blueprint%20for%203D%E2%80%90Printing%20Lab%20Scale%20Aqueous%20and%20Organic%20Redox%E2%80%90Flow.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1007378/files/Batteries%20Supercaps%20-%202023%20-%20Kortekaas%20-%20A%20Digital%20Blueprint%20for%203D%E2%80%90Printing%20Lab%20Scale%20Aqueous%20and%20Organic%20Redox%E2%80%90Flow.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1007378
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166392
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-31
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-03-31
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-31
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21