001007410 001__ 1007410
001007410 005__ 20240712113127.0
001007410 0247_ $$2doi$$a10.1021/jacs.2c11803
001007410 0247_ $$2ISSN$$a0002-7863
001007410 0247_ $$2ISSN$$a1520-5126
001007410 0247_ $$2ISSN$$a1943-2984
001007410 0247_ $$2Handle$$a2128/34443
001007410 0247_ $$2pmid$$a36946557
001007410 0247_ $$2WOS$$aWOS:000967981500001
001007410 037__ $$aFZJ-2023-02065
001007410 082__ $$a540
001007410 1001_ $$0P:(DE-HGF)0$$aMaus, Oliver$$b0
001007410 245__ $$aOn the Discrepancy between Local and Average Structure in the Fast $Na^+$ Ionic Conductor $Na_{2.9}Sb_{0.9}W_{0.1}S_{4}$
001007410 260__ $$aWashington, DC$$bACS Publications$$c2023
001007410 3367_ $$2DRIVER$$aarticle
001007410 3367_ $$2DataCite$$aOutput Types/Journal article
001007410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684314012_25564
001007410 3367_ $$2BibTeX$$aARTICLE
001007410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001007410 3367_ $$00$$2EndNote$$aJournal Article
001007410 520__ $$aAliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS43– by WS42– in Na2.9Sb0.9W0.1S4 leads to a very high ionic conductivity of 41 mS cm–1 at room temperature. While pristine Na3SbS4 crystallizes in a tetragonal structure, the substituted Na2.9Sb0.9W0.1S4 crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse 121Sb NMR experiments that the short-range order of Na2.9Sb0.9W0.1S4 remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na+ substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine Na3SbS4, quasi-elastic neutron scattering and solid-state 23Na nuclear magnetic resonance measurements revealed drastically improved Na+ diffusivity and decreased activation energies for Na2.9Sb0.9W0.1S4. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.
001007410 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001007410 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001007410 7001_ $$0P:(DE-HGF)0$$aAgne, Matthias T.$$b1
001007410 7001_ $$0P:(DE-HGF)0$$aFuchs, Till$$b2
001007410 7001_ $$0P:(DE-HGF)0$$aTill, Paul S.$$b3
001007410 7001_ $$0P:(DE-HGF)0$$aWankmiller, Björn$$b4
001007410 7001_ $$0P:(DE-HGF)0$$aGerdes, Josef Maximilian$$b5
001007410 7001_ $$0P:(DE-HGF)0$$aSharma, Rituraj$$b6
001007410 7001_ $$0P:(DE-HGF)0$$aHeere, Michael$$b7
001007410 7001_ $$0P:(DE-HGF)0$$aJalarvo, Niina$$b8
001007410 7001_ $$00000-0003-4114-7968$$aYaffe, Omer$$b9
001007410 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b10
001007410 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b11$$eCorresponding author
001007410 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.2c11803$$gVol. 145, no. 13, p. 7147 - 7158$$n13$$p7147 - 7158$$tJournal of the American Chemical Society$$v145$$x0002-7863$$y2023
001007410 8564_ $$uhttps://juser.fz-juelich.de/record/1007410/files/jacs.2c11803.pdf$$yRestricted
001007410 8564_ $$uhttps://juser.fz-juelich.de/record/1007410/files/Revised_Manuscript.pdf$$yPublished on 2023-03-22. Available in OpenAccess from 2024-03-22.$$zStatID:(DE-HGF)0510
001007410 909CO $$ooai:juser.fz-juelich.de:1007410$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001007410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b11$$kFZJ
001007410 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001007410 9141_ $$y2023
001007410 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001007410 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001007410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001007410 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2022$$d2023-10-21
001007410 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001007410 9801_ $$aFullTexts
001007410 980__ $$ajournal
001007410 980__ $$aVDB
001007410 980__ $$aUNRESTRICTED
001007410 980__ $$aI:(DE-Juel1)IEK-12-20141217
001007410 981__ $$aI:(DE-Juel1)IMD-4-20141217