Journal Article FZJ-2023-02065

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
On the Discrepancy between Local and Average Structure in the Fast $Na^+$ Ionic Conductor $Na_{2.9}Sb_{0.9}W_{0.1}S_{4}$

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
ACS Publications Washington, DC

Journal of the American Chemical Society 145(13), 7147 - 7158 () [10.1021/jacs.2c11803]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS43– by WS42– in Na2.9Sb0.9W0.1S4 leads to a very high ionic conductivity of 41 mS cm–1 at room temperature. While pristine Na3SbS4 crystallizes in a tetragonal structure, the substituted Na2.9Sb0.9W0.1S4 crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse 121Sb NMR experiments that the short-range order of Na2.9Sb0.9W0.1S4 remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na+ substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine Na3SbS4, quasi-elastic neutron scattering and solid-state 23Na nuclear magnetic resonance measurements revealed drastically improved Na+ diffusivity and decreased activation energies for Na2.9Sb0.9W0.1S4. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2023
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 10 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2023-05-12, last modified 2024-07-12


Published on 2023-03-22. Available in OpenAccess from 2024-03-22.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)