Contribution to a conference proceedings FZJ-2023-02167

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Parallel and Scalable Deep Learning to Reconstruct Actuated Turbulent Boundary Layer Flows. Part II: Autoencoder Training on HPC Systems

 ;  ;  ;  ;  ;

2022

33rd International Conference on Parallel Computational Fluid Dynamics, ParCFD2022, AlbaAlba, Italy, 25 May 2022 - 27 May 20222022-05-252022-05-27 4 pages ()

Please use a persistent id in citations:

Abstract: Convolutional autoencoders are trained on exceptionally large actuated turbulent boundary layer simulation data (8.3 TB) on the high-performance computer JUWELS at the J\"ulich Supercomputing Centre. The parallelization of the training is based on a distributed data-parallelism approach. This method relies on distributing the training dataset to multiple workers, where the trainable parameters of the convolutional autoencoder network are occasionally exchanged between the workers. This allows the training times to be drastically reduced - almost linear scaling performance can be achieved by increasing the number of workers (up to 2,048 GPUs). As a consequence of this increase, the total batch size also increases. This directly affects the training accuracy and hence, the quality of the trained network. The training error, computed between the reference and the reconstructed turbulent boundary layer fields, becomes larger when the number of workers is increased. This behavior needs to be taken care of especially when going to a large number of workers, i.e., a compromise between parallel speed and accuracy needs to be found.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) (951733)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Events > Contributions to a conference proceedings
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2023-05-26, last modified 2024-02-26


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)