001     1007693
005     20240226075322.0
024 7 _ |a 2128/34556
|2 Handle
037 _ _ |a FZJ-2023-02167
041 _ _ |a English
100 1 _ |a Inanc, Eray
|0 P:(DE-Juel1)188268
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 33rd International Conference on Parallel Computational Fluid Dynamics
|g ParCFD2022
|c Alba
|d 2022-05-25 - 2022-05-27
|w Italy
245 _ _ |a Parallel and Scalable Deep Learning to Reconstruct Actuated Turbulent Boundary Layer Flows. Part II: Autoencoder Training on HPC Systems
260 _ _ |c 2022
300 _ _ |a 4 pages
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1687327324_18222
|2 PUB:(DE-HGF)
520 _ _ |a Convolutional autoencoders are trained on exceptionally large actuated turbulent boundary layer simulation data (8.3 TB) on the high-performance computer JUWELS at the J\"ulich Supercomputing Centre. The parallelization of the training is based on a distributed data-parallelism approach. This method relies on distributing the training dataset to multiple workers, where the trainable parameters of the convolutional autoencoder network are occasionally exchanged between the workers. This allows the training times to be drastically reduced - almost linear scaling performance can be achieved by increasing the number of workers (up to 2,048 GPUs). As a consequence of this increase, the total batch size also increases. This directly affects the training accuracy and hence, the quality of the trained network. The training error, computed between the reference and the reconstructed turbulent boundary layer fields, becomes larger when the number of workers is increased. This behavior needs to be taken care of especially when going to a large number of workers, i.e., a compromise between parallel speed and accuracy needs to be found.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
700 1 _ |a Albers, Marian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sarma, Rakesh
|0 P:(DE-Juel1)188513
|b 2
|u fzj
700 1 _ |a Aach, Marcel
|0 P:(DE-Juel1)180916
|b 3
|u fzj
700 1 _ |a Schröder, Wolfgang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 5
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1007693/files/2022_ParCFD_Abstract_Inanc.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1007693
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188268
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180916
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21