% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Wrdenweber:1007792,
      author       = {Wördenweber, Henrik and Grundmann, Annika and Wang,
                      Zhaodong and Hoffmann-Eifert, Susanne and Kalisch, Holger
                      and Vescan, Andrei and Heuken, Michael and Waser, R. and
                      Karthäuser, Silvia},
      title        = {{T}he {M}o{S} 2 -{G}raphene-{S}apphire {H}eterostructure:
                      {I}nfluence of {S}ubstrate {P}roperties on the {M}o{S} 2
                      {B}and {S}tructure},
      journal      = {The journal of physical chemistry / C},
      volume       = {127},
      number       = {22},
      issn         = {1932-7447},
      address      = {Washington, DC},
      publisher    = {Soc.},
      reportid     = {FZJ-2023-02187},
      pages        = {10878–10887},
      year         = {2023},
      abstract     = {Van der Waals MoS2/graphene heterostructures are promising
                      candidates for advanced electronics and optoelectronics
                      beyond graphene. Herein, scanning probe methods and Raman
                      spectroscopy were applied for analysis of the electronic and
                      structural properties of monolayer (ML) and bilayer 2H-MoS2
                      deposited on single-layer graphene (SLG)-coated sapphire (S)
                      substrates by means of an industrially scalable metal
                      organic chemical vapor deposition process. The SLG/S
                      substrate shows two regions with distinctly different
                      morphology and varied interfacial coupling between SLG and
                      S. ML MoS2 nanosheets grown on the almost free-standing
                      graphene show no detectable interface coupling to the
                      substrate, and a value of 2.23 eV for the MoS2 quasiparticle
                      bandgap is determined. However, if the graphene is involved
                      in hydrogen bonds to the hydroxylated sapphire surface, an
                      increased MoS2/graphene interlayer coupling results, marked
                      by a shift of the conduction band edge toward Fermi energy
                      and a reduction of the ML MoS2 quasiparticle bandgap to 1.98
                      eV. The surface topography reveals a buckle structure of ML
                      MoS2 in conformity with SLG that is used to determine the
                      dependence of the ML MoS2 bandgap on the interfacial spacing
                      of this heterostructure. In addition, an in-gap acceptor
                      state about 0.9 eV above the valence band minimum of MoS2
                      has been observed on locally elevated positions on both
                      SLG/S regions, which is attributed to local bending strain
                      in the grown MoS2 nanosheets. These fundamental insights
                      reveal the impact of the underlying substrate on the
                      topography and the band alignment of the ML MoS2/SLG
                      heterostructure and provide the possibility for engineering
                      the quasiparticle bandgap of ML MoS2/SLG grown on controlled
                      substrates that may impact the performance of electronic and
                      optoelectronic devices therewith.},
      cin          = {PGI-7 / PGI-10 / JARA-FIT},
      ddc          = {530},
      cid          = {I:(DE-Juel1)PGI-7-20110106 / I:(DE-Juel1)PGI-10-20170113 /
                      $I:(DE-82)080009_20140620$},
      pnm          = {5233 - Memristive Materials and Devices (POF4-523) / BMBF
                      16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien
                      der künstlichen Intelligenz für die Elektronik der Zukunft
                      - NEUROTEC II - (BMBF-16ME0399) / BMBF 16ME0398K -
                      Verbundprojekt: Neuro-inspirierte Technologien der
                      künstlichen Intelligenz für die Elektronik der Zukunft -
                      NEUROTEC II - (BMBF-16ME0398K) / BMBF 16ME0403 -
                      Verbundprojekt: Neuro-inspirierte Technologien der
                      künstlichen Intelligenz für die Elektronik der Zukunft -
                      NEUROTEC II - (BMBF-16ME0403) / BMBF 03ZU1106AA - NeuroSys:
                      Memristor Crossbar Architekturen (Projekt A) - A
                      (03ZU1106AA) / BMBF 03ZU1106AB - NeuroSys: "Memristor
                      Crossbar Architekturen (Projekt A) - B" (BMBF-03ZU1106AB)},
      pid          = {G:(DE-HGF)POF4-5233 / G:(DE-82)BMBF-16ME0399 /
                      G:(DE-82)BMBF-16ME0398K / G:(DE-82)BMBF-16ME0403 /
                      G:(BMBF)03ZU1106AA / G:(DE-Juel1)BMBF-03ZU1106AB},
      typ          = {PUB:(DE-HGF)16},
      UT           = {WOS:001006025400001},
      doi          = {10.1021/acs.jpcc.3c02503},
      url          = {https://juser.fz-juelich.de/record/1007792},
}