% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Wrdenweber:1007792,
author = {Wördenweber, Henrik and Grundmann, Annika and Wang,
Zhaodong and Hoffmann-Eifert, Susanne and Kalisch, Holger
and Vescan, Andrei and Heuken, Michael and Waser, R. and
Karthäuser, Silvia},
title = {{T}he {M}o{S} 2 -{G}raphene-{S}apphire {H}eterostructure:
{I}nfluence of {S}ubstrate {P}roperties on the {M}o{S} 2
{B}and {S}tructure},
journal = {The journal of physical chemistry / C},
volume = {127},
number = {22},
issn = {1932-7447},
address = {Washington, DC},
publisher = {Soc.},
reportid = {FZJ-2023-02187},
pages = {10878–10887},
year = {2023},
abstract = {Van der Waals MoS2/graphene heterostructures are promising
candidates for advanced electronics and optoelectronics
beyond graphene. Herein, scanning probe methods and Raman
spectroscopy were applied for analysis of the electronic and
structural properties of monolayer (ML) and bilayer 2H-MoS2
deposited on single-layer graphene (SLG)-coated sapphire (S)
substrates by means of an industrially scalable metal
organic chemical vapor deposition process. The SLG/S
substrate shows two regions with distinctly different
morphology and varied interfacial coupling between SLG and
S. ML MoS2 nanosheets grown on the almost free-standing
graphene show no detectable interface coupling to the
substrate, and a value of 2.23 eV for the MoS2 quasiparticle
bandgap is determined. However, if the graphene is involved
in hydrogen bonds to the hydroxylated sapphire surface, an
increased MoS2/graphene interlayer coupling results, marked
by a shift of the conduction band edge toward Fermi energy
and a reduction of the ML MoS2 quasiparticle bandgap to 1.98
eV. The surface topography reveals a buckle structure of ML
MoS2 in conformity with SLG that is used to determine the
dependence of the ML MoS2 bandgap on the interfacial spacing
of this heterostructure. In addition, an in-gap acceptor
state about 0.9 eV above the valence band minimum of MoS2
has been observed on locally elevated positions on both
SLG/S regions, which is attributed to local bending strain
in the grown MoS2 nanosheets. These fundamental insights
reveal the impact of the underlying substrate on the
topography and the band alignment of the ML MoS2/SLG
heterostructure and provide the possibility for engineering
the quasiparticle bandgap of ML MoS2/SLG grown on controlled
substrates that may impact the performance of electronic and
optoelectronic devices therewith.},
cin = {PGI-7 / PGI-10 / JARA-FIT},
ddc = {530},
cid = {I:(DE-Juel1)PGI-7-20110106 / I:(DE-Juel1)PGI-10-20170113 /
$I:(DE-82)080009_20140620$},
pnm = {5233 - Memristive Materials and Devices (POF4-523) / BMBF
16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien
der künstlichen Intelligenz für die Elektronik der Zukunft
- NEUROTEC II - (BMBF-16ME0399) / BMBF 16ME0398K -
Verbundprojekt: Neuro-inspirierte Technologien der
künstlichen Intelligenz für die Elektronik der Zukunft -
NEUROTEC II - (BMBF-16ME0398K) / BMBF 16ME0403 -
Verbundprojekt: Neuro-inspirierte Technologien der
künstlichen Intelligenz für die Elektronik der Zukunft -
NEUROTEC II - (BMBF-16ME0403) / BMBF 03ZU1106AA - NeuroSys:
Memristor Crossbar Architekturen (Projekt A) - A
(03ZU1106AA) / BMBF 03ZU1106AB - NeuroSys: "Memristor
Crossbar Architekturen (Projekt A) - B" (BMBF-03ZU1106AB)},
pid = {G:(DE-HGF)POF4-5233 / G:(DE-82)BMBF-16ME0399 /
G:(DE-82)BMBF-16ME0398K / G:(DE-82)BMBF-16ME0403 /
G:(BMBF)03ZU1106AA / G:(DE-Juel1)BMBF-03ZU1106AB},
typ = {PUB:(DE-HGF)16},
UT = {WOS:001006025400001},
doi = {10.1021/acs.jpcc.3c02503},
url = {https://juser.fz-juelich.de/record/1007792},
}