001008403 001__ 1008403
001008403 005__ 20231027114407.0
001008403 0247_ $$2doi$$a10.1016/j.ultramic.2023.113738
001008403 0247_ $$2ISSN$$a0304-3991
001008403 0247_ $$2ISSN$$a1879-2723
001008403 0247_ $$2Handle$$a2128/34543
001008403 0247_ $$2pmid$$a37080091
001008403 0247_ $$2WOS$$aWOS:000989407200001
001008403 037__ $$aFZJ-2023-02329
001008403 041__ $$aEnglish
001008403 082__ $$a570
001008403 1001_ $$0P:(DE-HGF)0$$aLanders, David$$b0
001008403 245__ $$aTEMGYM Advanced: Software for electron lens aberrations and parallelised electron ray tracing
001008403 260__ $$aAmsterdam$$bElsevier Science$$c2023
001008403 3367_ $$2DRIVER$$aarticle
001008403 3367_ $$2DataCite$$aOutput Types/Journal article
001008403 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687172589_9132
001008403 3367_ $$2BibTeX$$aARTICLE
001008403 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008403 3367_ $$00$$2EndNote$$aJournal Article
001008403 520__ $$aCharacterisation of the electron beams trajectory in an electron microscope is possible in a few select commercial software packages, but these tools and their source code are not available in a free and accessible manner. This paper introduces the free and open-source software TEMGYM Advanced, which implements ray tracing methods that calculate the path of electrons through a magnetic or electrostatic lens and allow evaluation of the first-order properties and third-order geometric aberrations. Validation of the aberration coefficient calculations is performed by implementing two independent methods – the aberration integral and differential algebra (DA) methods and by comparing the results of each. This paper also demonstrates parallelised electron ray tracing through a series of magnetic components, which enables near real-time generation of a physically accurate beam-spot including aberrations and brings closer the realisation of a digital twin of an electron microscope. TEMGYM Advanced represents a valuable resource for the electron microscopy community, providing an accessible and open source means of characterising electron lenses. This software utilises the Python programming language to complement the growing ecosystem of free and open-source software within the electron microscopy community, and to facilitate the application of machine learning to an electron microscope digital twin for instrument automation. The software is available under GNU Public License number Three (GPL 3).
001008403 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001008403 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008403 7001_ $$0P:(DE-HGF)0$$aClancy, Ian$$b1
001008403 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b2
001008403 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b3
001008403 7001_ $$00000-0002-3081-5644$$aStewart, Andrew$$b4$$eCorresponding author
001008403 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2023.113738$$gVol. 250, p. 113738 -$$p113738 -$$tUltramicroscopy$$v250$$x0304-3991$$y2023
001008403 8564_ $$uhttps://juser.fz-juelich.de/record/1008403/files/1-s2.0-S0304399123000554-main.pdf$$yOpenAccess
001008403 909CO $$ooai:juser.fz-juelich.de:1008403$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008403 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ
001008403 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b3$$kFZJ
001008403 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001008403 9141_ $$y2023
001008403 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008403 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008403 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001008403 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2022$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001008403 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001008403 920__ $$lyes
001008403 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001008403 980__ $$ajournal
001008403 980__ $$aVDB
001008403 980__ $$aUNRESTRICTED
001008403 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001008403 9801_ $$aFullTexts