Journal Article FZJ-2023-02329

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
TEMGYM Advanced: Software for electron lens aberrations and parallelised electron ray tracing

 ;  ;  ;  ;

2023
Elsevier Science Amsterdam

Ultramicroscopy 250, 113738 - () [10.1016/j.ultramic.2023.113738]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Characterisation of the electron beams trajectory in an electron microscope is possible in a few select commercial software packages, but these tools and their source code are not available in a free and accessible manner. This paper introduces the free and open-source software TEMGYM Advanced, which implements ray tracing methods that calculate the path of electrons through a magnetic or electrostatic lens and allow evaluation of the first-order properties and third-order geometric aberrations. Validation of the aberration coefficient calculations is performed by implementing two independent methods – the aberration integral and differential algebra (DA) methods and by comparing the results of each. This paper also demonstrates parallelised electron ray tracing through a series of magnetic components, which enables near real-time generation of a physically accurate beam-spot including aberrations and brings closer the realisation of a digital twin of an electron microscope. TEMGYM Advanced represents a valuable resource for the electron microscopy community, providing an accessible and open source means of characterising electron lenses. This software utilises the Python programming language to complement the growing ecosystem of free and open-source software within the electron microscopy community, and to facilitate the application of machine learning to an electron microscope digital twin for instrument automation. The software is available under GNU Public License number Three (GPL 3).

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) (POF4-535)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-06-19, last modified 2023-10-27


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)