001008457 001__ 1008457
001008457 005__ 20240105070343.0
001008457 0247_ $$2doi$$a10.1016/j.aop.2023.169314
001008457 0247_ $$2ISSN$$a0003-4916
001008457 0247_ $$2ISSN$$a1096-035X
001008457 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02357
001008457 037__ $$aFZJ-2023-02357
001008457 082__ $$a530
001008457 1001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b0$$eCorresponding author
001008457 245__ $$aEinstein–Podolsky–Rosen–Bohm experiments: A discrete data driven approach
001008457 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
001008457 3367_ $$2DRIVER$$aarticle
001008457 3367_ $$2DataCite$$aOutput Types/Journal article
001008457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1688360261_10248
001008457 3367_ $$2BibTeX$$aARTICLE
001008457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008457 3367_ $$00$$2EndNote$$aJournal Article
001008457 520__ $$aWe take the point of view that building a one-way bridge from experimental data to mathematical models instead of the other way around avoids running into controversies resulting from attaching meaning to the symbols used in the latter. In particular, we show that adopting this view offers new perspectives for constructing mathematical models for and interpreting the results of Einstein–Podolsky–Rosen–Bohm experiments. We first prove new Bell-type inequalities constraining the values of the four correlations obtained by performing Einstein–Podolsky–Rosen–Bohm experiments under four different conditions. The proof is “model-free” in the sense that it does not refer to any mathematical model that one imagines to have produced the data. The constraints only depend on the number of quadruples obtained by reshuffling the data in the four data sets without changing the values of the correlations. These new inequalities reduce to model-free versions of the well-known Bell-type inequalities if the maximum fraction of quadruples is equal to one. Being model-free, a violation of the latter by experimental data implies that not all the data in the four data sets can be reshuffled to form quadruples. Furthermore, being model-free inequalities, a violation of the latter by experimental data only implies that any mathematical model assumed to produce this data does not apply. Starting from the data obtained by performing Einstein–Podolsky–Rosen–Bohm experiments, we construct instead of postulate mathematical models that describe the main features of these data. The mathematical framework of plausible reasoning is applied to reproducible and robust data, yielding without using any concept of quantum theory, the expression of the correlation for a system of two spin-1/2 objects in the singlet state. Next, we apply Bell’s theorem to the Stern–Gerlach experiment and demonstrate how the requirement of separability leads to the quantum-theoretical description of the averages and correlations obtained from an Einstein–Podolsky–Rosen–Bohm experiment. We analyze the data of an Einstein–Podolsky–Rosen–Bohm experiment and debunk the popular statement that Einstein–Podolsky–Rosen–Bohm experiments have vindicated quantum theory. We argue that it is not quantum theory but the processing of data from EPRB experiments that should be questioned. We perform Einstein–Podolsky–Rosen–Bohm experiments on a superconducting quantum information processor to show that the event-by-event generation of discrete data can yield results that are in good agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment. We demonstrate that a stochastic and a subquantum model can also produce data that are in excellent agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment.
001008457 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001008457 536__ $$0G:(EU-Grant)820363$$aOpenSuperQ - An Open Superconducting Quantum Computer (820363)$$c820363$$fH2020-FETFLAG-2018-03$$x1
001008457 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008457 7001_ $$0P:(DE-HGF)0$$aKatsnelson, Mikhail I.$$b1
001008457 7001_ $$0P:(DE-Juel1)174485$$aJattana, Manpreet S.$$b2$$ufzj
001008457 7001_ $$0P:(DE-Juel1)176997$$aMehta, Vrinda$$b3$$ufzj
001008457 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b4$$ufzj
001008457 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b5$$ufzj
001008457 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b6$$ufzj
001008457 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b7$$ufzj
001008457 773__ $$0PERI:(DE-600)1461336-0$$a10.1016/j.aop.2023.169314$$gVol. 453, p. 169314 -$$p169314$$tAnnals of physics$$v453$$x0003-4916$$y2023
001008457 8564_ $$uhttps://juser.fz-juelich.de/record/1008457/files/1-s2.0-S0003491623001008-main.pdf$$yOpenAccess
001008457 8767_ $$d2023-06-20$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt
001008457 909CO $$ooai:juser.fz-juelich.de:1008457$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b0$$kFZJ
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174485$$aForschungszentrum Jülich$$b2$$kFZJ
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176997$$aForschungszentrum Jülich$$b3$$kFZJ
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b4$$kFZJ
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b5$$kFZJ
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b6$$kFZJ
001008457 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b7$$kFZJ
001008457 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001008457 9141_ $$y2023
001008457 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001008457 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001008457 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001008457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008457 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001008457 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN PHYS-NEW YORK : 2022$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001008457 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001008457 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008457 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008457 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001008457 980__ $$ajournal
001008457 980__ $$aVDB
001008457 980__ $$aUNRESTRICTED
001008457 980__ $$aI:(DE-Juel1)JSC-20090406
001008457 980__ $$aAPC
001008457 9801_ $$aAPC
001008457 9801_ $$aFullTexts