Journal Article FZJ-2023-02357

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Einstein–Podolsky–Rosen–Bohm experiments: A discrete data driven approach

 ;  ;  ;  ;  ;  ;  ;

2023
Elsevier Amsterdam [u.a.]

Annals of physics 453, 169314 () [10.1016/j.aop.2023.169314]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: We take the point of view that building a one-way bridge from experimental data to mathematical models instead of the other way around avoids running into controversies resulting from attaching meaning to the symbols used in the latter. In particular, we show that adopting this view offers new perspectives for constructing mathematical models for and interpreting the results of Einstein–Podolsky–Rosen–Bohm experiments. We first prove new Bell-type inequalities constraining the values of the four correlations obtained by performing Einstein–Podolsky–Rosen–Bohm experiments under four different conditions. The proof is “model-free” in the sense that it does not refer to any mathematical model that one imagines to have produced the data. The constraints only depend on the number of quadruples obtained by reshuffling the data in the four data sets without changing the values of the correlations. These new inequalities reduce to model-free versions of the well-known Bell-type inequalities if the maximum fraction of quadruples is equal to one. Being model-free, a violation of the latter by experimental data implies that not all the data in the four data sets can be reshuffled to form quadruples. Furthermore, being model-free inequalities, a violation of the latter by experimental data only implies that any mathematical model assumed to produce this data does not apply. Starting from the data obtained by performing Einstein–Podolsky–Rosen–Bohm experiments, we construct instead of postulate mathematical models that describe the main features of these data. The mathematical framework of plausible reasoning is applied to reproducible and robust data, yielding without using any concept of quantum theory, the expression of the correlation for a system of two spin-1/2 objects in the singlet state. Next, we apply Bell’s theorem to the Stern–Gerlach experiment and demonstrate how the requirement of separability leads to the quantum-theoretical description of the averages and correlations obtained from an Einstein–Podolsky–Rosen–Bohm experiment. We analyze the data of an Einstein–Podolsky–Rosen–Bohm experiment and debunk the popular statement that Einstein–Podolsky–Rosen–Bohm experiments have vindicated quantum theory. We argue that it is not quantum theory but the processing of data from EPRB experiments that should be questioned. We perform Einstein–Podolsky–Rosen–Bohm experiments on a superconducting quantum information processor to show that the event-by-event generation of discrete data can yield results that are in good agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment. We demonstrate that a stochastic and a subquantum model can also produce data that are in excellent agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. OpenSuperQ - An Open Superconducting Quantum Computer (820363) (820363)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2023-06-20, last modified 2024-01-05


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)