001     1008457
005     20240105070343.0
024 7 _ |a 10.1016/j.aop.2023.169314
|2 doi
024 7 _ |a 0003-4916
|2 ISSN
024 7 _ |a 1096-035X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02357
|2 datacite_doi
037 _ _ |a FZJ-2023-02357
082 _ _ |a 530
100 1 _ |a De Raedt, Hans
|0 P:(DE-Juel1)179169
|b 0
|e Corresponding author
245 _ _ |a Einstein–Podolsky–Rosen–Bohm experiments: A discrete data driven approach
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688360261_10248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We take the point of view that building a one-way bridge from experimental data to mathematical models instead of the other way around avoids running into controversies resulting from attaching meaning to the symbols used in the latter. In particular, we show that adopting this view offers new perspectives for constructing mathematical models for and interpreting the results of Einstein–Podolsky–Rosen–Bohm experiments. We first prove new Bell-type inequalities constraining the values of the four correlations obtained by performing Einstein–Podolsky–Rosen–Bohm experiments under four different conditions. The proof is “model-free” in the sense that it does not refer to any mathematical model that one imagines to have produced the data. The constraints only depend on the number of quadruples obtained by reshuffling the data in the four data sets without changing the values of the correlations. These new inequalities reduce to model-free versions of the well-known Bell-type inequalities if the maximum fraction of quadruples is equal to one. Being model-free, a violation of the latter by experimental data implies that not all the data in the four data sets can be reshuffled to form quadruples. Furthermore, being model-free inequalities, a violation of the latter by experimental data only implies that any mathematical model assumed to produce this data does not apply. Starting from the data obtained by performing Einstein–Podolsky–Rosen–Bohm experiments, we construct instead of postulate mathematical models that describe the main features of these data. The mathematical framework of plausible reasoning is applied to reproducible and robust data, yielding without using any concept of quantum theory, the expression of the correlation for a system of two spin-1/2 objects in the singlet state. Next, we apply Bell’s theorem to the Stern–Gerlach experiment and demonstrate how the requirement of separability leads to the quantum-theoretical description of the averages and correlations obtained from an Einstein–Podolsky–Rosen–Bohm experiment. We analyze the data of an Einstein–Podolsky–Rosen–Bohm experiment and debunk the popular statement that Einstein–Podolsky–Rosen–Bohm experiments have vindicated quantum theory. We argue that it is not quantum theory but the processing of data from EPRB experiments that should be questioned. We perform Einstein–Podolsky–Rosen–Bohm experiments on a superconducting quantum information processor to show that the event-by-event generation of discrete data can yield results that are in good agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment. We demonstrate that a stochastic and a subquantum model can also produce data that are in excellent agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a OpenSuperQ - An Open Superconducting Quantum Computer (820363)
|0 G:(EU-Grant)820363
|c 820363
|f H2020-FETFLAG-2018-03
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Katsnelson, Mikhail I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jattana, Manpreet S.
|0 P:(DE-Juel1)174485
|b 2
|u fzj
700 1 _ |a Mehta, Vrinda
|0 P:(DE-Juel1)176997
|b 3
|u fzj
700 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 4
|u fzj
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 5
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 6
|u fzj
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 7
|u fzj
773 _ _ |a 10.1016/j.aop.2023.169314
|g Vol. 453, p. 169314 -
|0 PERI:(DE-600)1461336-0
|p 169314
|t Annals of physics
|v 453
|y 2023
|x 0003-4916
856 4 _ |u https://juser.fz-juelich.de/record/1008457/files/1-s2.0-S0003491623001008-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1008457
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179169
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144355
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN PHYS-NEW YORK : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21