001008519 001__ 1008519
001008519 005__ 20240711101508.0
001008519 0247_ $$2doi$$a10.1016/j.ijhydene.2023.04.191
001008519 0247_ $$2ISSN$$a0360-3199
001008519 0247_ $$2ISSN$$a1879-3487
001008519 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02359
001008519 0247_ $$2WOS$$aWOS:001114391700001
001008519 037__ $$aFZJ-2023-02359
001008519 082__ $$a620
001008519 1001_ $$0P:(DE-Juel1)177667$$aKullmann, Felix$$b0$$eCorresponding author
001008519 245__ $$aThe role of hydrogen for the defossilization of the German chemical industry
001008519 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001008519 3367_ $$2DRIVER$$aarticle
001008519 3367_ $$2DataCite$$aOutput Types/Journal article
001008519 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1700745298_2241
001008519 3367_ $$2BibTeX$$aARTICLE
001008519 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008519 3367_ $$00$$2EndNote$$aJournal Article
001008519 520__ $$aWithin the European Green Deal, the European industry is summoned to transform towards a green and circular economy to reduce CO2-emissions and reach climate goals. Special focus is on the chemical industry to boost recycling processes for plastics, exploit resource efficiency potentials, and switch to a completely renewable feedstock (defossilization). Despite common understanding that drastic changes have to take place it is yet unknown how the industrial transformation should be accomplished. This work explains how a cost-optimal defossilization of the chemical industry in the context of national greenhouse gas (GHG) mitigation strategies look like. The central part of this investigation is based on a national energy system model to optimize the future energy system design of Germany, as a case study for a highly industrialized country. A replacement of fossil-based feedstocks by renewable feedstocks leads to a significant increase in hydrogen demand by +40% compared to a reference scenario. The resulting demand of hydrogen-based energy carriers, including the demand for renewable raw materials, must be produced domestically or imported. This leads to cumulative additional costs of the transformation that are 32% higher than those of a reference scenario without defossilization of the industry. Fischer-Tropsch synthesis and the methanol-to-olefins route can be identified as key technologies for the defossilization of the chemical industry.
001008519 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001008519 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
001008519 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008519 7001_ $$0P:(DE-Juel1)130470$$aLinßen, Jochen$$b1$$ufzj
001008519 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b2$$ufzj
001008519 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2023.04.191$$gp. S0360319923019705$$n99$$p38936-38952$$tInternational journal of hydrogen energy$$v48$$x0360-3199$$y2023
001008519 8564_ $$uhttps://juser.fz-juelich.de/record/1008519/files/1-s2.0-S0360319923019705-main.pdf$$yOpenAccess
001008519 8767_ $$d2023-10-09$$eHybrid-OA$$jZahlung erfolgt
001008519 909CO $$ooai:juser.fz-juelich.de:1008519$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177667$$aForschungszentrum Jülich$$b0$$kFZJ
001008519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b1$$kFZJ
001008519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b2$$kFZJ
001008519 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b2$$kRWTH
001008519 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001008519 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
001008519 9141_ $$y2023
001008519 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008519 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008519 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008519 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008519 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2022$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001008519 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J HYDROGEN ENERG : 2022$$d2023-08-25
001008519 920__ $$lyes
001008519 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
001008519 9801_ $$aAPC
001008519 9801_ $$aFullTexts
001008519 980__ $$ajournal
001008519 980__ $$aVDB
001008519 980__ $$aUNRESTRICTED
001008519 980__ $$aI:(DE-Juel1)IEK-3-20101013
001008519 980__ $$aAPC
001008519 981__ $$aI:(DE-Juel1)ICE-2-20101013