001008543 001__ 1008543
001008543 005__ 20250512115732.0
001008543 0247_ $$2doi$$a10.1038/s44172-023-00059-2
001008543 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02380
001008543 0247_ $$2WOS$$aWOS:001478243600001
001008543 037__ $$aFZJ-2023-02380
001008543 1001_ $$0P:(DE-HGF)0$$aLiu, Mingshan$$b0
001008543 245__ $$aVertical GeSn nanowire MOSFETs for CMOS beyond silicon
001008543 260__ $$a[London]$$bNature Publishing Group UK$$c2023
001008543 3367_ $$2DRIVER$$aarticle
001008543 3367_ $$2DataCite$$aOutput Types/Journal article
001008543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706011224_11472
001008543 3367_ $$2BibTeX$$aARTICLE
001008543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008543 3367_ $$00$$2EndNote$$aJournal Article
001008543 520__ $$aThe continued downscaling of silicon CMOS technology presents challenges for achieving the required low power consumption. While high mobility channel materials hold promise for improved device performance at low power levels, a material system which enables both high mobility n-FETs and p-FETs, that is compatible with Si technology and can be readily integrated into existing fabrication lines is required. Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transconductance is increased to 850 µS/µm by exploiting the small band gap of GeSn as source yielding high injection velocities, the mobility in n-FETs is increased 2.5-fold compared to a Ge reference device, by using GeSn as channel material. The potential of the material system for a future beyond Si CMOS logic and quantum computing applications is demonstrated via a GeSn inverter and steep switching at cryogenic temperatures, respectively.
001008543 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001008543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008543 7001_ $$0P:(DE-Juel1)185010$$aJunk, Yannik$$b1
001008543 7001_ $$0P:(DE-Juel1)176845$$aHan, Yi$$b2
001008543 7001_ $$0P:(DE-Juel1)180318$$aYang, Dong$$b3
001008543 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin Hee$$b4
001008543 7001_ $$0P:(DE-HGF)0$$aFrauenrath, Marvin$$b5
001008543 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b6
001008543 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b7
001008543 7001_ $$0P:(DE-HGF)0$$aBärwolf, Florian$$b8
001008543 7001_ $$0P:(DE-HGF)0$$aMai, Andreas$$b9
001008543 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b10
001008543 7001_ $$0P:(DE-HGF)0$$aKnoch, Joachim$$b11
001008543 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b12
001008543 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b13$$eCorresponding author
001008543 773__ $$0PERI:(DE-600)3121995-0$$a10.1038/s44172-023-00059-2$$gVol. 2, no. 1, p. 7$$n1$$p7$$tCommunications engineering$$v2$$x2731-3395$$y2023
001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.pdf$$yOpenAccess
001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.gif?subformat=icon$$xicon$$yOpenAccess
001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001008543 8767_ $$8SN-2023-00419-b$$a1200193711$$d2023-06-21$$eAPC$$jZahlung erfolgt
001008543 909CO $$ooai:juser.fz-juelich.de:1008543$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185010$$aForschungszentrum Jülich$$b1$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176845$$aForschungszentrum Jülich$$b2$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180318$$aForschungszentrum Jülich$$b3$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b4$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b10$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b12$$kFZJ
001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b13$$kFZJ
001008543 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001008543 9141_ $$y2023
001008543 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008543 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008543 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:15Z
001008543 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:15Z
001008543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:15Z
001008543 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-03
001008543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-09-03
001008543 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-03
001008543 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001008543 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001008543 980__ $$ajournal
001008543 980__ $$aVDB
001008543 980__ $$aUNRESTRICTED
001008543 980__ $$aI:(DE-Juel1)PGI-9-20110106
001008543 980__ $$aI:(DE-82)080009_20140620
001008543 980__ $$aAPC
001008543 9801_ $$aAPC
001008543 9801_ $$aFullTexts