001008543 001__ 1008543 001008543 005__ 20250512115732.0 001008543 0247_ $$2doi$$a10.1038/s44172-023-00059-2 001008543 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02380 001008543 0247_ $$2WOS$$aWOS:001478243600001 001008543 037__ $$aFZJ-2023-02380 001008543 1001_ $$0P:(DE-HGF)0$$aLiu, Mingshan$$b0 001008543 245__ $$aVertical GeSn nanowire MOSFETs for CMOS beyond silicon 001008543 260__ $$a[London]$$bNature Publishing Group UK$$c2023 001008543 3367_ $$2DRIVER$$aarticle 001008543 3367_ $$2DataCite$$aOutput Types/Journal article 001008543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706011224_11472 001008543 3367_ $$2BibTeX$$aARTICLE 001008543 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001008543 3367_ $$00$$2EndNote$$aJournal Article 001008543 520__ $$aThe continued downscaling of silicon CMOS technology presents challenges for achieving the required low power consumption. While high mobility channel materials hold promise for improved device performance at low power levels, a material system which enables both high mobility n-FETs and p-FETs, that is compatible with Si technology and can be readily integrated into existing fabrication lines is required. Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transconductance is increased to 850 µS/µm by exploiting the small band gap of GeSn as source yielding high injection velocities, the mobility in n-FETs is increased 2.5-fold compared to a Ge reference device, by using GeSn as channel material. The potential of the material system for a future beyond Si CMOS logic and quantum computing applications is demonstrated via a GeSn inverter and steep switching at cryogenic temperatures, respectively. 001008543 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0 001008543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001008543 7001_ $$0P:(DE-Juel1)185010$$aJunk, Yannik$$b1 001008543 7001_ $$0P:(DE-Juel1)176845$$aHan, Yi$$b2 001008543 7001_ $$0P:(DE-Juel1)180318$$aYang, Dong$$b3 001008543 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin Hee$$b4 001008543 7001_ $$0P:(DE-HGF)0$$aFrauenrath, Marvin$$b5 001008543 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b6 001008543 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b7 001008543 7001_ $$0P:(DE-HGF)0$$aBärwolf, Florian$$b8 001008543 7001_ $$0P:(DE-HGF)0$$aMai, Andreas$$b9 001008543 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b10 001008543 7001_ $$0P:(DE-HGF)0$$aKnoch, Joachim$$b11 001008543 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b12 001008543 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b13$$eCorresponding author 001008543 773__ $$0PERI:(DE-600)3121995-0$$a10.1038/s44172-023-00059-2$$gVol. 2, no. 1, p. 7$$n1$$p7$$tCommunications engineering$$v2$$x2731-3395$$y2023 001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.pdf$$yOpenAccess 001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.gif?subformat=icon$$xicon$$yOpenAccess 001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001008543 8564_ $$uhttps://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001008543 8767_ $$8SN-2023-00419-b$$a1200193711$$d2023-06-21$$eAPC$$jZahlung erfolgt 001008543 909CO $$ooai:juser.fz-juelich.de:1008543$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185010$$aForschungszentrum Jülich$$b1$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176845$$aForschungszentrum Jülich$$b2$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180318$$aForschungszentrum Jülich$$b3$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b4$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b10$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b12$$kFZJ 001008543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b13$$kFZJ 001008543 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 001008543 9141_ $$y2023 001008543 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001008543 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001008543 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:15Z 001008543 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:15Z 001008543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001008543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:15Z 001008543 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-03 001008543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-09-03 001008543 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-03 001008543 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 001008543 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 001008543 980__ $$ajournal 001008543 980__ $$aVDB 001008543 980__ $$aUNRESTRICTED 001008543 980__ $$aI:(DE-Juel1)PGI-9-20110106 001008543 980__ $$aI:(DE-82)080009_20140620 001008543 980__ $$aAPC 001008543 9801_ $$aAPC 001008543 9801_ $$aFullTexts