001     1008543
005     20250512115732.0
024 7 _ |a 10.1038/s44172-023-00059-2
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02380
|2 datacite_doi
024 7 _ |a WOS:001478243600001
|2 WOS
037 _ _ |a FZJ-2023-02380
100 1 _ |a Liu, Mingshan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Vertical GeSn nanowire MOSFETs for CMOS beyond silicon
260 _ _ |a [London]
|c 2023
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706011224_11472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The continued downscaling of silicon CMOS technology presents challenges for achieving the required low power consumption. While high mobility channel materials hold promise for improved device performance at low power levels, a material system which enables both high mobility n-FETs and p-FETs, that is compatible with Si technology and can be readily integrated into existing fabrication lines is required. Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transconductance is increased to 850 µS/µm by exploiting the small band gap of GeSn as source yielding high injection velocities, the mobility in n-FETs is increased 2.5-fold compared to a Ge reference device, by using GeSn as channel material. The potential of the material system for a future beyond Si CMOS logic and quantum computing applications is demonstrated via a GeSn inverter and steep switching at cryogenic temperatures, respectively.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Junk, Yannik
|0 P:(DE-Juel1)185010
|b 1
700 1 _ |a Han, Yi
|0 P:(DE-Juel1)176845
|b 2
700 1 _ |a Yang, Dong
|0 P:(DE-Juel1)180318
|b 3
700 1 _ |a Bae, Jin Hee
|0 P:(DE-Juel1)177006
|b 4
700 1 _ |a Frauenrath, Marvin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hartmann, Jean-Michel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bärwolf, Florian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mai, Andreas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 10
700 1 _ |a Knoch, Joachim
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 12
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 13
|e Corresponding author
773 _ _ |a 10.1038/s44172-023-00059-2
|g Vol. 2, no. 1, p. 7
|0 PERI:(DE-600)3121995-0
|n 1
|p 7
|t Communications engineering
|v 2
|y 2023
|x 2731-3395
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1008543/files/s44172-023-00059-2.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1008543
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185010
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176845
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:15Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:15Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-09-03
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21