001008648 001__ 1008648
001008648 005__ 20240712100852.0
001008648 0247_ $$2doi$$a10.5194/acp-23-6591-2023
001008648 0247_ $$2ISSN$$a1680-7316
001008648 0247_ $$2ISSN$$a1680-7324
001008648 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02449
001008648 0247_ $$2WOS$$aWOS:001010623000001
001008648 037__ $$aFZJ-2023-02449
001008648 082__ $$a550
001008648 1001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b0$$eCorresponding author
001008648 245__ $$aComment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)
001008648 260__ $$aKatlenburg-Lindau$$bEGU$$c2023
001008648 3367_ $$2DRIVER$$aarticle
001008648 3367_ $$2DataCite$$aOutput Types/Journal article
001008648 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1688546940_13394
001008648 3367_ $$2BibTeX$$aARTICLE
001008648 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008648 3367_ $$00$$2EndNote$$aJournal Article
001008648 520__ $$aSolar radiation management through artificially increasing the amount of stratospheric sulfate aerosol is being considered as a possible climate engineering method. To overcome the challenge of transporting the necessary amount of sulfur to the stratosphere, Quaglia and co-workers suggest deliberate emissions of carbonyl sulfide (OCS), a long-lived precursor of atmospheric sulfate. In their paper, published in Atmospheric Chemistry and Physics in 2022, they outline two scenarios with OCS emissions either at the Earth's surface or in the tropical upper troposphere and calculate the expected radiative forcing using a climate model. In our opinion, the study (i) neglects a significantly higher surface uptake that will inevitably be induced by the elevated atmospheric OCS concentrations and (ii) overestimates the net cooling effect of this OCS geoengineering approach due to some questionable parameterizations and assumptions in the radiative forcing calculations. In this commentary, we use state-of-the-art models to show that at the mean atmospheric OCS mixing ratios of the two emissions scenarios, the terrestrial biosphere and the oceans are expected to take up more OCS than is being released to reach these levels. Using chemistry climate models with a long-standing record for estimating the climate forcing of OCS and stratospheric aerosols, we also show that the net radiative forcing of the emission scenarios suggested by Quaglia and co-workers is smaller than suggested and insufficient to offset any significant portion of anthropogenically induced climate change. Our conclusion is that a geoengineering approach using OCS will not work under any circumstances and should not be considered further.
001008648 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001008648 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008648 7001_ $$0P:(DE-HGF)0$$aBrühl, Christoph$$b1
001008648 7001_ $$00000-0001-7040-149X$$aLennartz, Sinikka T.$$b2
001008648 7001_ $$0P:(DE-HGF)0$$aWhelan, Mary E.$$b3
001008648 7001_ $$00000-0002-2516-8454$$aKaushik, Aleya$$b4
001008648 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-6591-2023$$gVol. 23, no. 11, p. 6591 - 6598$$n11$$p6591 - 6598$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001008648 8564_ $$uhttps://juser.fz-juelich.de/record/1008648/files/receipt_Helmholtz-PUC-2023-51.pdf
001008648 8564_ $$uhttps://juser.fz-juelich.de/record/1008648/files/acp-23-6591-2023.pdf$$yOpenAccess
001008648 8767_ $$8Helmholtz-PUC-2023-51$$92023-06-14$$a1200193988$$d2023-06-26$$eAPC$$jZahlung erfolgt
001008648 909CO $$ooai:juser.fz-juelich.de:1008648$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b0$$kFZJ
001008648 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001008648 9141_ $$y2023
001008648 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008648 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008648 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001008648 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008648 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001008648 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001008648 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008648 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001008648 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001008648 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001008648 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001008648 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001008648 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001008648 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001008648 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001008648 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001008648 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001008648 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001008648 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001008648 9801_ $$aAPC
001008648 9801_ $$aFullTexts
001008648 980__ $$ajournal
001008648 980__ $$aVDB
001008648 980__ $$aUNRESTRICTED
001008648 980__ $$aI:(DE-Juel1)IEK-7-20101013
001008648 980__ $$aAPC
001008648 981__ $$aI:(DE-Juel1)ICE-4-20101013