001008690 001__ 1008690
001008690 005__ 20231023093628.0
001008690 0247_ $$2doi$$a10.1088/2634-4386/acdbe5
001008690 0247_ $$2Handle$$a2128/34598
001008690 0247_ $$2WOS$$aWOS:001064060100001
001008690 037__ $$aFZJ-2023-02481
001008690 082__ $$a621.3
001008690 1001_ $$00000-0003-1647-4254$$aButtberg, Milan$$b0
001008690 245__ $$aSimulating the filament morphology in electrochemical metallization cells
001008690 260__ $$aBristol$$bIOP Publishing Ltd.$$c2023
001008690 3367_ $$2DRIVER$$aarticle
001008690 3367_ $$2DataCite$$aOutput Types/Journal article
001008690 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687864325_15270
001008690 3367_ $$2BibTeX$$aARTICLE
001008690 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008690 3367_ $$00$$2EndNote$$aJournal Article
001008690 520__ $$aElectrochemical metallization (ECM) cells are based on the principle of voltage controlled formation or dissolution of a nanometer-thin metallic conductive filament (CF) between two electrodes separated by an insulating material, e.g. an oxide. The lifetime of the CF depends on factors such as materials and biasing. Depending on the lifetime of the CF—from microseconds to years—ECM cells show promising properties for use in neuromorphic circuits, for in-memory computing, or as selectors and memory cells in storage applications. For enabling those technologies with ECM cells, the lifetime of the CF has to be controlled. As various authors connect the lifetime with the morphology of the CF, the key parameters for CF formation have to be identified. In this work, we present a 2D axisymmetric physical continuum model that describes the kinetics of volatile and non-volatile ECM cells, as well as the morphology of the CF. It is shown that the morphology depends on both the amplitude of the applied voltage signal and CF-growth induced mechanical stress within the oxide layer. The model is validated with previously published kinetic measurements of non-volatile Ag/SiO2/Pt and volatile Ag/HfO2/Pt cells and the simulated CF morphologies are consistent with previous experimental CF observations.
001008690 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001008690 536__ $$0G:(DE-82)BMBF-16ME0399$$aBMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)$$cBMBF-16ME0399$$x1
001008690 536__ $$0G:(DE-82)BMBF-16ME0398K$$aBMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)$$cBMBF-16ME0398K$$x2
001008690 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008690 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b1
001008690 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b2$$eCorresponding author$$ufzj
001008690 773__ $$0PERI:(DE-600)3099608-9$$a10.1088/2634-4386/acdbe5$$gVol. 3, no. 2, p. 024010 -$$n2$$p024010 -$$tNeuromorphic computing and engineering$$v3$$x2634-4386$$y2023
001008690 8564_ $$uhttps://juser.fz-juelich.de/record/1008690/files/Buttberg_2023_Neuromorph._Comput._Eng._3_024010.pdf$$yOpenAccess
001008690 909CO $$ooai:juser.fz-juelich.de:1008690$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b1$$kFZJ
001008690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b2$$kFZJ
001008690 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001008690 9141_ $$y2023
001008690 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008690 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008690 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-18
001008690 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-18
001008690 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:40Z
001008690 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:40Z
001008690 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review, Double anonymous peer review$$d2023-04-12T14:53:40Z
001008690 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001008690 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001008690 980__ $$ajournal
001008690 980__ $$aVDB
001008690 980__ $$aUNRESTRICTED
001008690 980__ $$aI:(DE-Juel1)PGI-7-20110106
001008690 980__ $$aI:(DE-82)080009_20140620
001008690 9801_ $$aFullTexts