Journal Article FZJ-2023-02481

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Simulating the filament morphology in electrochemical metallization cells

 ;  ;

2023
IOP Publishing Ltd. Bristol

Neuromorphic computing and engineering 3(2), 024010 - () [10.1088/2634-4386/acdbe5]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Electrochemical metallization (ECM) cells are based on the principle of voltage controlled formation or dissolution of a nanometer-thin metallic conductive filament (CF) between two electrodes separated by an insulating material, e.g. an oxide. The lifetime of the CF depends on factors such as materials and biasing. Depending on the lifetime of the CF—from microseconds to years—ECM cells show promising properties for use in neuromorphic circuits, for in-memory computing, or as selectors and memory cells in storage applications. For enabling those technologies with ECM cells, the lifetime of the CF has to be controlled. As various authors connect the lifetime with the morphology of the CF, the key parameters for CF formation have to be identified. In this work, we present a 2D axisymmetric physical continuum model that describes the kinetics of volatile and non-volatile ECM cells, as well as the morphology of the CF. It is shown that the morphology depends on both the amplitude of the applied voltage signal and CF-growth induced mechanical stress within the oxide layer. The model is validated with previously published kinetic measurements of non-volatile Ag/SiO2/Pt and volatile Ag/HfO2/Pt cells and the simulated CF morphologies are consistent with previous experimental CF observations.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 5233 - Memristive Materials and Devices (POF4-523) (POF4-523)
  2. BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399) (BMBF-16ME0399)
  3. BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) (BMBF-16ME0398K)

Appears in the scientific report 2023
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; DOAJ Seal ; Fees
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-06-27, last modified 2023-10-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)