001008848 001__ 1008848
001008848 005__ 20240712113112.0
001008848 0247_ $$2doi$$a10.1021/acs.chemmater.3c00658
001008848 0247_ $$2ISSN$$a0897-4756
001008848 0247_ $$2ISSN$$a1520-5002
001008848 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02508
001008848 0247_ $$2WOS$$aWOS:001006225800001
001008848 037__ $$aFZJ-2023-02508
001008848 082__ $$a540
001008848 1001_ $$0P:(DE-HGF)0$$aHartel, Johannes$$b0
001008848 245__ $$aUnderstanding Lithium-Ion Transport in Selenophosphate-Based Lithium Argyrodites and Their Limitations in Solid-State Batteries
001008848 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
001008848 3367_ $$2DRIVER$$aarticle
001008848 3367_ $$2DataCite$$aOutput Types/Journal article
001008848 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689840262_16948
001008848 3367_ $$2BibTeX$$aARTICLE
001008848 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008848 3367_ $$00$$2EndNote$$aJournal Article
001008848 520__ $$aTo develop solid-state batteries with high power and energy densities, solid electrolytes with fast Li+ transport are required. Superionic lithium argyrodites have proven to be a versatile system, in which superior ionic conductivities can be achieved by elemental substitutions. Herein, we report the novel selenophosphate-based lithium argyrodites Li6–xPSe5–xBr1+x (0 ≤ x ≤ 0.2) exhibiting ionic conductivities up to 8.5 mS·cm–1 and uncover the origin of their fast Li+ transport. Rietveld refinement of neutron powder diffraction data reveals a better interconnection of the Li+ cages compared to the thiophosphate analogue Li6PS5Br, by the occupation of two additional Li+ sites, facilitating fast Li+ transport. Additionally, a larger unit cell volume, lattice softening, and higher structural disorder between halide and chalcogenide are unveiled. The application of Li5.85PSe4.85Br1.15 as the catholyte in In/LiIn|Li6PS5Br|LiNi0.83Co0.11Mn0.06O2:Li5.85PSe4.85Br1.15 solid-state batteries leads to severe degradation upon charging of the cell, revealing that selenophosphate-based lithium argyrodites are not suitable for applications in lithium nickel cobalt manganese oxide-based solid-state batteries from a performance perspective. This work further expands on the understanding of the structure–transport relationship in Li+ conducting argyrodites and re-emphasizes the necessity to consider chemical and electrochemical stability of solid electrolytes against the active materials when developing fast Li+ conductors.
001008848 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001008848 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008848 7001_ $$0P:(DE-HGF)0$$aBanik, Ananya$$b1
001008848 7001_ $$0P:(DE-HGF)0$$aGerdes, Josef Maximilian$$b2
001008848 7001_ $$0P:(DE-HGF)0$$aWankmiller, Björn$$b3
001008848 7001_ $$0P:(DE-HGF)0$$aHelm, Bianca$$b4
001008848 7001_ $$0P:(DE-Juel1)172659$$aLi, Cheng$$b5
001008848 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin A.$$b6
001008848 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b7
001008848 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b8$$eCorresponding author
001008848 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.3c00658$$gVol. 35, no. 12, p. 4798 - 4809$$n12$$p4798 - 4809$$tChemistry of materials$$v35$$x0897-4756$$y2023
001008848 8564_ $$uhttps://juser.fz-juelich.de/record/1008848/files/acs.chemmater.3c00658.pdf$$yRestricted
001008848 8564_ $$uhttps://juser.fz-juelich.de/record/1008848/files/Accepted%20Manuscript.pdf$$yPublished on 2023-06-12. Available in OpenAccess from 2024-06-12.
001008848 909CO $$ooai:juser.fz-juelich.de:1008848$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b6$$kFZJ
001008848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b8$$kFZJ
001008848 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001008848 9141_ $$y2023
001008848 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001008848 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001008848 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001008848 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-23$$wger
001008848 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2022$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
001008848 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2022$$d2023-08-23
001008848 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001008848 9801_ $$aFullTexts
001008848 980__ $$ajournal
001008848 980__ $$aVDB
001008848 980__ $$aUNRESTRICTED
001008848 980__ $$aI:(DE-Juel1)IEK-12-20141217
001008848 981__ $$aI:(DE-Juel1)IMD-4-20141217