001009095 001__ 1009095
001009095 005__ 20240712100905.0
001009095 0247_ $$2doi$$a10.5194/acp-23-7589-2023
001009095 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02634
001009095 0247_ $$2WOS$$aWOS:001054196800001
001009095 037__ $$aFZJ-2023-02634
001009095 041__ $$aEnglish
001009095 082__ $$a550
001009095 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b0$$eCorresponding author
001009095 245__ $$aLagrangian transport simulations using the extreme convection parameterization: an assessment for the ECMWF reanalyses
001009095 260__ $$aKatlenburg-Lindau$$bEGU$$c2023
001009095 3367_ $$2DRIVER$$aarticle
001009095 3367_ $$2DataCite$$aOutput Types/Journal article
001009095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704979827_2197
001009095 3367_ $$2BibTeX$$aARTICLE
001009095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009095 3367_ $$00$$2EndNote$$aJournal Article
001009095 520__ $$aAtmospheric convection plays a key role in tracer transport from the planetary boundary layer to the free troposphere. Lagrangian transport simulations driven by meteorological fields from global models or reanalysis products, such as the European Centre for Medium-Range Weather Forecasts' (ECMWF's) ERA5 and ERA-Interim reanalysis, typically lack proper explicit representations of convective updrafts and downdrafts because of the limited spatiotemporal resolution of the meteorology. Lagrangian transport simulations for the troposphere can be improved by applying parameterizations to better represent the effects of unresolved convective transport in the global meteorological reanalyses. Here, we implemented and assessed the effects of the extreme convection parameterization (ECP) in the Massive-Parallel Trajectory Calculations (MPTRAC) model. The ECP is conceptually simple. It requires the convective available potential energy (CAPE) and the height of the equilibrium level (EL) as input parameters. Assuming that unresolved convective events yield well-mixed vertical columns of air, the ECP randomly redistributes the air parcels vertically between the surface and the EL if CAPE is present. We analyzed statistics of explicitly resolved and parameterized convective updrafts and found that the frequencies of strong updrafts due to the ECP, i.e., 20 K potential temperature increase over 6 h or more, increase by 2 to 3 orders of magnitude for ERA5 and 3 to 5 orders of magnitude for ERA-Interim compared to the explicitly resolved updrafts. To assess the effects of the ECP on tropospheric tracer transport, we conducted transport simulations for the artificial tracer e90, which is released globally near the surface and which has a constant e-folding lifetime of 90 d throughout the atmosphere. The e90 simulations were conducted for the year 2017 with both ERA5 and ERA-Interim. Next to sensitivity tests on the choice of the CAPE threshold, an important tuning parameter of the ECP, we suggest a modification of the ECP method, i.e., to take into account the convective inhibition (CIN) indicating the presence of warm, stable layers that prevent convective updrafts in the real atmosphere. While ERA5 has higher spatiotemporal resolution and explicitly resolves more convective updrafts than ERA-Interim, we found there is still a need for both reanalyses to apply a convection parameterization such as the ECP to better represent tracer transport from the planetary boundary layer into the free troposphere on the global scale.
001009095 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001009095 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
001009095 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b1
001009095 7001_ $$0P:(DE-Juel1)180256$$aClemens, Jan Heinrich$$b2
001009095 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b3
001009095 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-7589-2023$$n13$$p7589–7609$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001009095 8564_ $$uhttps://juser.fz-juelich.de/record/1009095/files/Invoice_Helmholtz-PUC-2023-62.pdf
001009095 8564_ $$uhttps://juser.fz-juelich.de/record/1009095/files/acp-23-7589-2023.pdf$$yOpenAccess
001009095 8767_ $$8Helmholtz-PUC-2023-62$$92023-07-12$$a1200194726$$d2023-07-14$$eAPC$$jZahlung erfolgt
001009095 909CO $$ooai:juser.fz-juelich.de:1009095$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001009095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b0$$kFZJ
001009095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b1$$kFZJ
001009095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180256$$aForschungszentrum Jülich$$b2$$kFZJ
001009095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b3$$kFZJ
001009095 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001009095 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
001009095 9141_ $$y2023
001009095 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009095 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001009095 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001009095 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009095 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001009095 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001009095 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009095 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001009095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001009095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001009095 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001009095 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001009095 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001009095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001009095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001009095 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001009095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001009095 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001009095 920__ $$lyes
001009095 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001009095 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
001009095 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x2
001009095 9801_ $$aAPC
001009095 9801_ $$aFullTexts
001009095 980__ $$ajournal
001009095 980__ $$aVDB
001009095 980__ $$aI:(DE-Juel1)JSC-20090406
001009095 980__ $$aI:(DE-Juel1)IEK-7-20101013
001009095 980__ $$aI:(DE-Juel1)CASA-20230315
001009095 980__ $$aAPC
001009095 980__ $$aUNRESTRICTED
001009095 981__ $$aI:(DE-Juel1)ICE-4-20101013