001009126 001__ 1009126
001009126 005__ 20241021104513.0
001009126 0247_ $$2doi$$a10.1107/S2052252523004505
001009126 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02656
001009126 0247_ $$2pmid$$a37335769
001009126 0247_ $$2WOS$$aWOS:001028778800012
001009126 037__ $$aFZJ-2023-02656
001009126 082__ $$a530
001009126 1001_ $$0P:(DE-Juel1)186015$$aLeidl, Max Leo$$b0$$eFirst author$$ufzj
001009126 245__ $$aDynamical scattering in ice-embedded proteins in conventional and scanning transmission electron microscopy
001009126 260__ $$aChester$$c2023
001009126 3367_ $$2DRIVER$$aarticle
001009126 3367_ $$2DataCite$$aOutput Types/Journal article
001009126 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708595017_14417
001009126 3367_ $$2BibTeX$$aARTICLE
001009126 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009126 3367_ $$00$$2EndNote$$aJournal Article
001009126 520__ $$aStructure determination of biological macromolecules using cryogenic electron microscopy is based on applying the phase object (PO) assumption and the weak phase object (WPO) approximation to reconstruct the 3D potential density of the molecule. To enhance the understanding of image formation of protein complexes embedded in glass-like ice in a transmission electron microscope, this study addresses multiple scattering in tobacco mosaic virus (TMV) specimens. This includes the propagation inside the molecule while also accounting for the effect of structural noise. The atoms in biological macromolecules are light but are distributed over several nanometres. Commonly, PO and WPO approximations are used in most simulations and reconstruction models. Therefore, dynamical multislice simulations of TMV specimens embedded in glass-like ice were performed based on fully atomistic molecular-dynamics simulations. In the first part, the impact of multiple scattering is studied using different numbers of slices. In the second part, different sample thicknesses of the ice-embedded TMV are considered in terms of additional ice layers. It is found that single-slice models yield full frequency transfer up to a resolution of 2.5 Å, followed by attenuation up to 1.4 Å. Three slices are sufficient to reach an information transfer up to 1.0 Å. In the third part, ptychographic reconstructions based on scanning transmission electron microscopy (STEM) and single-slice models are compared with conventional TEM simulations. The ptychographic reconstructions do not need the deliberate introduction of aberrations, are capable of post-acquisition aberration correction and promise benefits for information transfer, especially at resolutions beyond 1.8 Å.Keywords: amorphous ice; cryogenic electron microscopy; dynamical scattering; image simulations; integrative structural biology; molecular dynamics.
001009126 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001009126 536__ $$0G:(DE-HGF)VH-NG-1317$$amoreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317)$$cVH-NG-1317$$x1
001009126 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
001009126 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009126 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b1
001009126 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b2$$eCorresponding author
001009126 773__ $$0PERI:(DE-600)2754953-7$$a10.1107/S2052252523004505$$gVol. 10, no. 4, p. 475 - 486$$n4$$p475 - 486$$tIUCrJ$$v10$$x2052-2525$$y2023
001009126 8564_ $$uhttps://juser.fz-juelich.de/record/1009126/files/Invoice_E-13000.pdf
001009126 8564_ $$uhttps://juser.fz-juelich.de/record/1009126/files/Dynamical%20scattering%20in%20ice-embedded%20proteins%20-%201.7.2023.pdf$$yOpenAccess
001009126 8767_ $$8E-13000$$92023-05-22$$a1200193540$$d2023-06-12$$eAPC$$jZahlung erfolgt$$zZB zahlt nicht, da 1. Affiliation von CA nicht FZJ; USD 2300,-
001009126 909CO $$ooai:juser.fz-juelich.de:1009126$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001009126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186015$$aForschungszentrum Jülich$$b0$$kFZJ
001009126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b1$$kFZJ
001009126 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b2$$kFZJ
001009126 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001009126 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001009126 9141_ $$y2023
001009126 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001009126 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009126 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001009126 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001009126 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009126 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001009126 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIUCRJ : 2022$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-03-08T13:58:02Z
001009126 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-03-08T13:58:02Z
001009126 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-03-08T13:58:02Z
001009126 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001009126 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001009126 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009126 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009126 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009126 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001009126 920__ $$lyes
001009126 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001009126 980__ $$ajournal
001009126 980__ $$aVDB
001009126 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001009126 980__ $$aAPC
001009126 980__ $$aUNRESTRICTED
001009126 9801_ $$aAPC
001009126 9801_ $$aFullTexts