Journal Article FZJ-2023-02656

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dynamical scattering in ice-embedded proteins in conventional and scanning transmission electron microscopy

 ;  ;

2023
Chester

IUCrJ 10(4), 475 - 486 () [10.1107/S2052252523004505]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Structure determination of biological macromolecules using cryogenic electron microscopy is based on applying the phase object (PO) assumption and the weak phase object (WPO) approximation to reconstruct the 3D potential density of the molecule. To enhance the understanding of image formation of protein complexes embedded in glass-like ice in a transmission electron microscope, this study addresses multiple scattering in tobacco mosaic virus (TMV) specimens. This includes the propagation inside the molecule while also accounting for the effect of structural noise. The atoms in biological macromolecules are light but are distributed over several nanometres. Commonly, PO and WPO approximations are used in most simulations and reconstruction models. Therefore, dynamical multislice simulations of TMV specimens embedded in glass-like ice were performed based on fully atomistic molecular-dynamics simulations. In the first part, the impact of multiple scattering is studied using different numbers of slices. In the second part, different sample thicknesses of the ice-embedded TMV are considered in terms of additional ice layers. It is found that single-slice models yield full frequency transfer up to a resolution of 2.5 Å, followed by attenuation up to 1.4 Å. Three slices are sufficient to reach an information transfer up to 1.0 Å. In the third part, ptychographic reconstructions based on scanning transmission electron microscopy (STEM) and single-slice models are compared with conventional TEM simulations. The ptychographic reconstructions do not need the deliberate introduction of aberrations, are capable of post-acquisition aberration correction and promise benefits for information transfer, especially at resolutions beyond 1.8 Å.Keywords: amorphous ice; cryogenic electron microscopy; dynamical scattering; image simulations; integrative structural biology; molecular dynamics.

Classification:

Contributing Institute(s):
  1. Strukturbiologie (ER-C-3)
Research Program(s):
  1. 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535) (POF4-535)
  2. moreSTEM - Momentum-resolved Scanning Transmission Electron Microscopy (VH-NG-1317) (VH-NG-1317)
  3. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-07-13, last modified 2024-10-21


OpenAccess:
Download fulltext PDF
(additional files)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)