001     1009129
005     20250204113733.0
024 7 _ |a 10.1111/1751-7915.14312
|2 doi
024 7 _ |a 1751-7907
|2 ISSN
024 7 _ |a 1751-7915
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02659
|2 datacite_doi
024 7 _ |a 37435812
|2 pmid
024 7 _ |a WOS:001028928400001
|2 WOS
037 _ _ |a FZJ-2023-02659
082 _ _ |a 610
100 1 _ |a Bitzenhofer, Nora Lisa
|0 P:(DE-Juel1)174200
|b 0
245 _ _ |a Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis
260 _ _ |a Oxford
|c 2024
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706608859_4426
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Höfel, Carolin
|0 0000-0002-4230-2942
|b 1
700 1 _ |a Thies, Stephan
|0 P:(DE-Juel1)128936
|b 2
700 1 _ |a Weiler, Andrea Jeanette
|0 P:(DE-Juel1)167162
|b 3
700 1 _ |a Eberlein, Christian
|0 0000-0003-4521-8145
|b 4
700 1 _ |a Heipieper, Hermann J.
|0 0000-0002-3723-9600
|b 5
700 1 _ |a Batra-Safferling, Renu
|0 P:(DE-Juel1)131950
|b 6
700 1 _ |a Sundermeyer, Pia
|0 P:(DE-Juel1)173603
|b 7
700 1 _ |a Heidler, Thomas
|0 P:(DE-Juel1)184892
|b 8
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 9
700 1 _ |a Busche, Tobias
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kalinowski, Jörn
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Belthle, Thomke
|0 0000-0001-6802-4189
|b 12
700 1 _ |a Drepper, Thomas
|0 P:(DE-Juel1)131426
|b 13
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 14
700 1 _ |a Loeschcke, Anita
|0 P:(DE-Juel1)131500
|b 15
|e Corresponding author
|u fzj
773 _ _ |a 10.1111/1751-7915.14312
|g p. 1751-7915.14312
|0 PERI:(DE-600)2406063-X
|n 1
|p e14312
|t Microbial biotechnology
|v 17
|y 2024
|x 1751-7907
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1009129
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174200
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167162
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)173603
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)184892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)173949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131500
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 2
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROB BIOTECHNOL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:04:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:04:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:04:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MICROB BIOTECHNOL : 2022
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21