| Home > Publications database > Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis > print |
| 001 | 1009129 | ||
| 005 | 20250204113733.0 | ||
| 024 | 7 | _ | |a 10.1111/1751-7915.14312 |2 doi |
| 024 | 7 | _ | |a 1751-7907 |2 ISSN |
| 024 | 7 | _ | |a 1751-7915 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-02659 |2 datacite_doi |
| 024 | 7 | _ | |a 37435812 |2 pmid |
| 024 | 7 | _ | |a WOS:001028928400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-02659 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Bitzenhofer, Nora Lisa |0 P:(DE-Juel1)174200 |b 0 |
| 245 | _ | _ | |a Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis |
| 260 | _ | _ | |a Oxford |c 2024 |b Wiley-Blackwell |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706608859_4426 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications. |
| 536 | _ | _ | |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535) |0 G:(DE-HGF)POF4-5352 |c POF4-535 |f POF IV |x 0 |
| 536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 1 |
| 536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Höfel, Carolin |0 0000-0002-4230-2942 |b 1 |
| 700 | 1 | _ | |a Thies, Stephan |0 P:(DE-Juel1)128936 |b 2 |
| 700 | 1 | _ | |a Weiler, Andrea Jeanette |0 P:(DE-Juel1)167162 |b 3 |
| 700 | 1 | _ | |a Eberlein, Christian |0 0000-0003-4521-8145 |b 4 |
| 700 | 1 | _ | |a Heipieper, Hermann J. |0 0000-0002-3723-9600 |b 5 |
| 700 | 1 | _ | |a Batra-Safferling, Renu |0 P:(DE-Juel1)131950 |b 6 |
| 700 | 1 | _ | |a Sundermeyer, Pia |0 P:(DE-Juel1)173603 |b 7 |
| 700 | 1 | _ | |a Heidler, Thomas |0 P:(DE-Juel1)184892 |b 8 |
| 700 | 1 | _ | |a Sachse, Carsten |0 P:(DE-Juel1)173949 |b 9 |
| 700 | 1 | _ | |a Busche, Tobias |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Kalinowski, Jörn |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Belthle, Thomke |0 0000-0001-6802-4189 |b 12 |
| 700 | 1 | _ | |a Drepper, Thomas |0 P:(DE-Juel1)131426 |b 13 |
| 700 | 1 | _ | |a Jaeger, Karl-Erich |0 P:(DE-Juel1)131457 |b 14 |
| 700 | 1 | _ | |a Loeschcke, Anita |0 P:(DE-Juel1)131500 |b 15 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1111/1751-7915.14312 |g p. 1751-7915.14312 |0 PERI:(DE-600)2406063-X |n 1 |p e14312 |t Microbial biotechnology |v 17 |y 2024 |x 1751-7907 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1009129/files/Microbial%20Biotechnology%20-%202023%20-%20Bitzenhofer%20-%20Exploring%20engineered%20vesiculation%20by%20Pseudomonas%20putida%20KT2440%20for%20natural.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1009129 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174200 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)128936 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)167162 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131950 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)173603 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)184892 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)173949 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131426 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)131457 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)131500 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5352 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 2 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-03-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-03-30 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-03-30 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-03-30 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-03-30 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MICROB BIOTECHNOL : 2022 |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-08T17:04:28Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-08T17:04:28Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-08-08T17:04:28Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-27 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-27 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MICROB BIOTECHNOL : 2022 |d 2024-12-27 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-3-20170113 |k ER-C-3 |l Strukturbiologie |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IMET-20090612 |k IMET |l Institut für Molekulare Enzymtechnologie (HHUD) |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-3-20170113 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 980 | _ | _ | |a I:(DE-Juel1)IMET-20090612 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|