001009254 001__ 1009254
001009254 005__ 20240712112835.0
001009254 0247_ $$2doi$$a10.1021/acsaem.3c00985
001009254 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02714
001009254 0247_ $$2WOS$$aWOS:001027010900001
001009254 037__ $$aFZJ-2023-02714
001009254 082__ $$a540
001009254 1001_ $$0P:(DE-Juel1)180626$$aRobens, Elisabeth$$b0$$eCorresponding author
001009254 245__ $$aBimetallic Copper–Silver Catalysts for the Electrochemical Reduction of CO 2 to Ethanol
001009254 260__ $$aWashington, DC$$bACS Publications$$c2023
001009254 3367_ $$2DRIVER$$aarticle
001009254 3367_ $$2DataCite$$aOutput Types/Journal article
001009254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698384282_23571
001009254 3367_ $$2BibTeX$$aARTICLE
001009254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009254 3367_ $$00$$2EndNote$$aJournal Article
001009254 520__ $$aThe electrochemical reduction of carbon dioxide to ethanol is a promising way to make CO2 electrolysis economically feasible. In this work, a bimetallic catalyst of silver and copper is synthesized, and the effect of its copper content on the formation of ethanol is analyzed. By decreasing the near-surface copper content from 99 to 45% (measured by XPS) at a current density of −20 mA cm–2, the Faradaic efficiency of ethanol could be enhanced from 5 to 23%. Moreover, we show that with excess of CO, due to a lower copper and a higher silver near-surface content, the formation of ethanol is favored over ethylene.
001009254 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001009254 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x1
001009254 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001009254 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x3
001009254 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009254 7001_ $$0P:(DE-Juel1)179451$$aHecker, Burkhard$$b1
001009254 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b2
001009254 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3
001009254 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
001009254 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.3c00985$$gp. acsaem.3c00985$$n14$$p7571–7577$$tACS applied energy materials$$v6$$x2574-0962$$y2023
001009254 8564_ $$uhttps://juser.fz-juelich.de/record/1009254/files/robens-et-al-2023-bimetallic-copper-silver-catalysts-for-the-electrochemical-reduction-of-co2-to-ethanol.pdf$$yOpenAccess
001009254 8767_ $$d2023-09-06$$eHybrid-OA$$jPublish and Read
001009254 909CO $$ooai:juser.fz-juelich.de:1009254$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001009254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180626$$aForschungszentrum Jülich$$b0$$kFZJ
001009254 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180626$$aRWTH Aachen$$b0$$kRWTH
001009254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179451$$aForschungszentrum Jülich$$b1$$kFZJ
001009254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b2$$kFZJ
001009254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
001009254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001009254 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001009254 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001009254 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
001009254 9141_ $$y2023
001009254 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009254 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001009254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001009254 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009254 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001009254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001009254 920__ $$lyes
001009254 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001009254 9801_ $$aAPC
001009254 9801_ $$aFullTexts
001009254 980__ $$ajournal
001009254 980__ $$aVDB
001009254 980__ $$aUNRESTRICTED
001009254 980__ $$aI:(DE-Juel1)IEK-9-20110218
001009254 980__ $$aAPC
001009254 981__ $$aI:(DE-Juel1)IET-1-20110218