001009463 001__ 1009463
001009463 005__ 20240712101048.0
001009463 0247_ $$2doi$$a10.5194/amt-16-3505-2023
001009463 0247_ $$2ISSN$$a1867-1381
001009463 0247_ $$2ISSN$$a1867-8548
001009463 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02800
001009463 0247_ $$2WOS$$aWOS:001033870700001
001009463 037__ $$aFZJ-2023-02800
001009463 082__ $$a550
001009463 1001_ $$0P:(DE-Juel1)176120$$aWeber, Patrick$$b0$$eCorresponding author
001009463 245__ $$aCharacterisation of a self-sustained, water-based condensation particle counter for aircraft cruising pressure level operation
001009463 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2023
001009463 3367_ $$2DRIVER$$aarticle
001009463 3367_ $$2DataCite$$aOutput Types/Journal article
001009463 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692179062_26781
001009463 3367_ $$2BibTeX$$aARTICLE
001009463 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009463 3367_ $$00$$2EndNote$$aJournal Article
001009463 520__ $$aAerosol particle number concentration measurements are a crucial part of aerosol research. Vertical profile measurements and high-altitude/low-pressure performance of the respective instruments become more important for remote sensing validation and a vital tool for the observation of climate variables. This study tests the new, commercially available water condensation particle counter (MAGIC 210-LP) for the deployment at aircraft cruising pressure levels that the European research infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org, last access: 2 May 2023) is aiming for by operating measurement instrumentation onboard passenger aircraft. We conducted laboratory experiments for conditions to simulate passenger aircraft flight altitude at operation pressure. We demonstrate that this type of water condensation particle counter shows excellent agreement with a butanol-based instrument used in parallel. A Faraday cup aerosol electrometer serves as the reference instrument. Experiments are performed with test aerosol ammonium sulfate and fresh combustion soot at pressure levels ranging from 700 to 200 hPa. For soluble particles like ammonium sulfate, the 50 % detection efficiency cut-off diameter (D50) is around 5 nm and does not differ significantly for all performed experiments. For non-soluble fresh soot particles, the D50 cut-off diameter of approximately 10 nm does not vary substantially as a function of pressure, whereas the 90 % detection efficiency cut-off diameter D90 increases from 19 nm at 700 hPa to 37 nm at 200 hPa. The overall counting efficiency for particles larger than 40 nm reaches 100 % for working pressures of 200 hPa and higher.
001009463 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001009463 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009463 7001_ $$0P:(DE-Juel1)172939$$aBischof, Oliver F.$$b1$$ufzj
001009463 7001_ $$0P:(DE-Juel1)167513$$aFischer, Benedikt$$b2$$ufzj
001009463 7001_ $$0P:(DE-Juel1)129176$$aBerg, Marcel$$b3$$ufzj
001009463 7001_ $$0P:(DE-HGF)0$$aHering, Susanne$$b4
001009463 7001_ $$0P:(DE-HGF)0$$aSpielman, Steven$$b5
001009463 7001_ $$0P:(DE-HGF)0$$aLewis, Gregory$$b6
001009463 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b7
001009463 7001_ $$0P:(DE-Juel1)159541$$aBundke, Ulrich$$b8$$eCorresponding author
001009463 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-16-3505-2023$$gVol. 16, no. 14, p. 3505 - 3514$$n14$$p3505 - 3514$$tAtmospheric measurement techniques$$v16$$x1867-1381$$y2023
001009463 8564_ $$uhttps://juser.fz-juelich.de/record/1009463/files/Invoice_Helmholtz-PUC-2023-68.pdf
001009463 8564_ $$uhttps://juser.fz-juelich.de/record/1009463/files/amt-16-3505-2023.pdf$$yOpenAccess
001009463 8767_ $$8Helmholtz-PUC-2023-68$$92023-07-21$$a1200195019$$d2023-07-25$$eAPC$$jZahlung erfolgt
001009463 909CO $$ooai:juser.fz-juelich.de:1009463$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001009463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176120$$aForschungszentrum Jülich$$b0$$kFZJ
001009463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172939$$aForschungszentrum Jülich$$b1$$kFZJ
001009463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167513$$aForschungszentrum Jülich$$b2$$kFZJ
001009463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129176$$aForschungszentrum Jülich$$b3$$kFZJ
001009463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b7$$kFZJ
001009463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159541$$aForschungszentrum Jülich$$b8$$kFZJ
001009463 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001009463 9141_ $$y2023
001009463 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009463 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009463 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009463 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001009463 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
001009463 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009463 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
001009463 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-18
001009463 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009463 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-18
001009463 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:30:35Z
001009463 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:30:35Z
001009463 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:30:35Z
001009463 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2022$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001009463 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001009463 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
001009463 9801_ $$aAPC
001009463 9801_ $$aFullTexts
001009463 980__ $$ajournal
001009463 980__ $$aVDB
001009463 980__ $$aUNRESTRICTED
001009463 980__ $$aI:(DE-Juel1)IEK-8-20101013
001009463 980__ $$aAPC
001009463 981__ $$aI:(DE-Juel1)ICE-3-20101013