001009715 001__ 1009715
001009715 005__ 20240313103110.0
001009715 0247_ $$2doi$$a10.1101/2023.06.14.544966
001009715 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02947
001009715 037__ $$aFZJ-2023-02947
001009715 1001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b0$$eCorresponding author
001009715 245__ $$aNeural manifolds in V1 change with top-down signals from V4 targeting the foveal region
001009715 260__ $$bbioRxiv$$c2023
001009715 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1695183420_22332
001009715 3367_ $$2ORCID$$aWORKING_PAPER
001009715 3367_ $$028$$2EndNote$$aElectronic Article
001009715 3367_ $$2DRIVER$$apreprint
001009715 3367_ $$2BibTeX$$aARTICLE
001009715 3367_ $$2DataCite$$aOutput Types/Working Paper
001009715 520__ $$aHigh-dimensional brain activity is often organised into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multielectrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4 and DP with a high spatio-temporal resolution. We find, for the first time, that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods, a previously unknown effect. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1, causing two distinct neural manifolds. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by mode.
001009715 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001009715 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001009715 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x2
001009715 536__ $$0G:(GEPRIS)347572269$$aDFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)$$c347572269$$x3
001009715 588__ $$aDataset connected to CrossRef
001009715 7001_ $$0P:(DE-Juel1)176776$$aKurth, Anno C.$$b1
001009715 7001_ $$0P:(DE-Juel1)144576$$aIto, Junji$$b2
001009715 7001_ $$0P:(DE-Juel1)176920$$aKleinjohann, Alexander$$b3
001009715 7001_ $$0P:(DE-Juel1)162446$$aBarthélemy, Frédéric V.$$b4
001009715 7001_ $$00000-0001-6948-1234$$aBrochier, Thomas$$b5
001009715 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b6$$ufzj
001009715 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha J.$$b7
001009715 773__ $$a10.1101/2023.06.14.544966
001009715 8564_ $$uhttps://juser.fz-juelich.de/record/1009715/files/2023.06.14.544966.full.pdf$$yOpenAccess
001009715 909CO $$ooai:juser.fz-juelich.de:1009715$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b0$$kFZJ
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176776$$aForschungszentrum Jülich$$b1$$kFZJ
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144576$$aForschungszentrum Jülich$$b2$$kFZJ
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176920$$aForschungszentrum Jülich$$b3$$kFZJ
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162446$$aForschungszentrum Jülich$$b4$$kFZJ
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b6$$kFZJ
001009715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b7$$kFZJ
001009715 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001009715 9141_ $$y2023
001009715 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009715 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001009715 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001009715 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001009715 9801_ $$aFullTexts
001009715 980__ $$apreprint
001009715 980__ $$aVDB
001009715 980__ $$aUNRESTRICTED
001009715 980__ $$aI:(DE-Juel1)INM-6-20090406
001009715 980__ $$aI:(DE-Juel1)IAS-6-20130828
001009715 980__ $$aI:(DE-Juel1)INM-10-20170113
001009715 981__ $$aI:(DE-Juel1)IAS-6-20130828