Preprint FZJ-2023-02947

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Neural manifolds in V1 change with top-down signals from V4 targeting the foveal region

 ;  ;  ;  ;  ;  ;  ;

2023
bioRxiv

bioRxiv () [10.1101/2023.06.14.544966]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: High-dimensional brain activity is often organised into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multielectrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4 and DP with a high spatio-temporal resolution. We find, for the first time, that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods, a previously unknown effect. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1, causing two distinct neural manifolds. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by mode.


Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5231 - Neuroscientific Foundations (POF4-523) (POF4-523)
  2. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  3. GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240) (368482240)
  4. DFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269) (347572269)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-10
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Document types > Reports > Preprints
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-08-02, last modified 2024-03-13


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)