001010539 001__ 1010539
001010539 005__ 20240712100855.0
001010539 0247_ $$2doi$$a10.3389/feart.2023.1177502
001010539 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03113
001010539 0247_ $$2WOS$$aWOS:001059168500001
001010539 037__ $$aFZJ-2023-03113
001010539 041__ $$aEnglish
001010539 082__ $$a550
001010539 1001_ $$0P:(DE-Juel1)176891$$aZou, Ling$$b0$$eCorresponding author
001010539 245__ $$aVariability and trends of the tropical tropopause derived from a 1980–2021 multi-reanalysis assessment
001010539 260__ $$aLausanne$$bFrontiers Media$$c2023
001010539 3367_ $$2DRIVER$$aarticle
001010539 3367_ $$2DataCite$$aOutput Types/Journal article
001010539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1696579152_15314
001010539 3367_ $$2BibTeX$$aARTICLE
001010539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010539 3367_ $$00$$2EndNote$$aJournal Article
001010539 520__ $$aAs the tropopause plays a key role in regulating the entry of air from the troposphere into the stratosphere and in controlling stratosphere-troposphere exchange, variation of the tropopause impacts the atmospheric dynamics, circulation patterns, and the distribution of greenhouse gases in the upper troposphere and lower stratosphere (UTLS). Therefore, it is of particular interest to investigate the climatological characteristics and trends of the tropopause. Previous studies have investigated the tropopause characteristics using reanalyses and multi-source observations. This study extends the analysis of long-term variability and trends of tropical tropopause characteristics in earlier studies from 1980 up to 2021 using the modern ERA5 reanalysis and compares the results with those of other reanalyses, including ERA-Interim, MERRA-2, and NCEP1/2. Our analysis reveals a general rise and cooling of the tropical tropopause between 1980 and 2021. The geopotential height has increased by approximately 0.06 ± 0.01 km/decade (at a 95% confidence level), while the temperature has decreased by −0.09 ± 0.03 K/decade (at a 95% confidence level) for both the lapse rate tropopause and the cold point tropopause in ERA5. However, from 2006 to 2021, ERA5 shows a warming tropical tropopause (0.10 ± 0.11 K/decade) along with a slower rise in tropopause height (0.05 ± 0.02 km/decade) (at a 95% confidence level). Furthermore, our analysis demonstrates a decline in the rise and cooling of the tropical tropopause since the late 1990s, based on moving 20-year window trends in ERA5. Similar trends are observed in other investigated reanalyses. In addition, this study evaluated the variability of the width of the tropical belt based on tropopause height data from the reanalyses. The ERA5 data show a narrowing tropical belt (−0.16 ± 0.11°/decade) for the time period 1980–2021 according to the relative threshold method. It reveals a tropical widening (0.05 ± 0.22°/decade) for the period between 1980 and 2005, followed by a tropical narrowing (−0.17 ± 0.42°/decade) after 2006. However, the large uncertainties pose a challenge in drawing definitive conclusions on the change of tropical belt width. Despite the many challenges involved in deriving the characteristics and trends of the tropopause from reanalysis data, this study and the open reanalysis tropopause data sets provided to the community will help to better inform future assessments of stratosphere-troposphere exchange and studies of chemistry and dynamics of the upper troposphere and lower stratosphere region.
001010539 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001010539 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
001010539 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010539 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b1
001010539 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b2
001010539 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b3
001010539 773__ $$0PERI:(DE-600)2741235-0$$a10.3389/feart.2023.1177502$$gVol. 11, p. 1177502$$p1177502$$tFrontiers in Earth Science$$v11$$x2296-6463$$y2023
001010539 8564_ $$uhttps://juser.fz-juelich.de/record/1010539/files/feart-11-1177502.pdf$$yOpenAccess
001010539 8767_ $$d2023-10-06$$eAPC$$jDeposit$$z2741,25 $
001010539 909CO $$ooai:juser.fz-juelich.de:1010539$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001010539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176891$$aForschungszentrum Jülich$$b0$$kFZJ
001010539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b1$$kFZJ
001010539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b2$$kFZJ
001010539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b3$$kFZJ
001010539 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001010539 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
001010539 9141_ $$y2023
001010539 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001010539 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010539 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:36:48Z
001010539 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:36:48Z
001010539 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001010539 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001010539 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010539 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001010539 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT EARTH SC-SWITZ : 2022$$d2023-10-26
001010539 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001010539 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001010539 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-13T10:36:48Z
001010539 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001010539 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001010539 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001010539 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001010539 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001010539 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001010539 920__ $$lyes
001010539 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001010539 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
001010539 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x2
001010539 9801_ $$aAPC
001010539 9801_ $$aFullTexts
001010539 980__ $$ajournal
001010539 980__ $$aVDB
001010539 980__ $$aUNRESTRICTED
001010539 980__ $$aI:(DE-Juel1)JSC-20090406
001010539 980__ $$aI:(DE-Juel1)IEK-7-20101013
001010539 980__ $$aI:(DE-Juel1)CASA-20230315
001010539 980__ $$aAPC
001010539 981__ $$aI:(DE-Juel1)ICE-4-20101013