001     1010539
005     20240712100855.0
024 7 _ |a 10.3389/feart.2023.1177502
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03113
|2 datacite_doi
024 7 _ |a WOS:001059168500001
|2 WOS
037 _ _ |a FZJ-2023-03113
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Zou, Ling
|0 P:(DE-Juel1)176891
|b 0
|e Corresponding author
245 _ _ |a Variability and trends of the tropical tropopause derived from a 1980–2021 multi-reanalysis assessment
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1696579152_15314
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As the tropopause plays a key role in regulating the entry of air from the troposphere into the stratosphere and in controlling stratosphere-troposphere exchange, variation of the tropopause impacts the atmospheric dynamics, circulation patterns, and the distribution of greenhouse gases in the upper troposphere and lower stratosphere (UTLS). Therefore, it is of particular interest to investigate the climatological characteristics and trends of the tropopause. Previous studies have investigated the tropopause characteristics using reanalyses and multi-source observations. This study extends the analysis of long-term variability and trends of tropical tropopause characteristics in earlier studies from 1980 up to 2021 using the modern ERA5 reanalysis and compares the results with those of other reanalyses, including ERA-Interim, MERRA-2, and NCEP1/2. Our analysis reveals a general rise and cooling of the tropical tropopause between 1980 and 2021. The geopotential height has increased by approximately 0.06 ± 0.01 km/decade (at a 95% confidence level), while the temperature has decreased by −0.09 ± 0.03 K/decade (at a 95% confidence level) for both the lapse rate tropopause and the cold point tropopause in ERA5. However, from 2006 to 2021, ERA5 shows a warming tropical tropopause (0.10 ± 0.11 K/decade) along with a slower rise in tropopause height (0.05 ± 0.02 km/decade) (at a 95% confidence level). Furthermore, our analysis demonstrates a decline in the rise and cooling of the tropical tropopause since the late 1990s, based on moving 20-year window trends in ERA5. Similar trends are observed in other investigated reanalyses. In addition, this study evaluated the variability of the width of the tropical belt based on tropopause height data from the reanalyses. The ERA5 data show a narrowing tropical belt (−0.16 ± 0.11°/decade) for the time period 1980–2021 according to the relative threshold method. It reveals a tropical widening (0.05 ± 0.22°/decade) for the period between 1980 and 2005, followed by a tropical narrowing (−0.17 ± 0.42°/decade) after 2006. However, the large uncertainties pose a challenge in drawing definitive conclusions on the change of tropical belt width. Despite the many challenges involved in deriving the characteristics and trends of the tropopause from reanalysis data, this study and the open reanalysis tropopause data sets provided to the community will help to better inform future assessments of stratosphere-troposphere exchange and studies of chemistry and dynamics of the upper troposphere and lower stratosphere region.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 1
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 2
700 1 _ |a Spang, Reinhold
|0 P:(DE-Juel1)129154
|b 3
773 _ _ |a 10.3389/feart.2023.1177502
|g Vol. 11, p. 1177502
|0 PERI:(DE-600)2741235-0
|p 1177502
|t Frontiers in Earth Science
|v 11
|y 2023
|x 2296-6463
856 4 _ |u https://juser.fz-juelich.de/record/1010539/files/feart-11-1177502.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010539
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176891
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129138
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129154
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-13T10:36:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-13T10:36:48Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT EARTH SC-SWITZ : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-13T10:36:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)CASA-20230315
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21