RETIMAGER

REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION

Grant period2023-09-01 - 2027-02-28
Funding bodyEuropean Union
Call numberHORIZON-EIC-2022-PATHFINDEROPEN-01
Grant number101099096
IdentifierG:(EU-Grant)101099096

Note: Over the last decades, Positron Emission Tomography (PET) has been firmly established as the predominant molecular imaging technique due to its unmatched sensitivity and capability to address many different metabolic processes. However, there is huge room for improvement, as current clinical PET scanners are limited to spatial resolutions higher than 2.5 mm and temporal resolutions longer than 5 seconds. This hampers applications of PET for preclinical research and clinical diagnosis in small tissues or lesions and precludes real-time reconstruction of metabolic images. RETIMAGER is a proposal for a molecular imaging system with a ten-fold spatial and temporal improvement on the reconstructed image with respect to current PET devices. This will not only boost the quantitative performance, but it will enable new applications in cardiology, vascular oncology, oncology, neurology, and other areas. We will achieve this milestone by developing smart radiation detectors with non-conventional geometries that combine the advantages of both pixelated and monolithic detectors, the two dominant and seemingly incompatible technologies employed in PET scanners. Our new scanner will provide 0.25 mm pixel resolvability with time frames as short as 0.01 sec. By aggregating these blocks in a unique gantry self-adapting to the geometry of the field-of-view, RETIMAGER will achieve an unprecedented increase in sensitivity and in in vivo real-time imaging with submillimeter resolution. We will pair it with high-throughput data processing and AI tools to assess with a single tracer both perfusion and metabolism in preclinical and clinical models. In the long run, RETIMAGER’s faster, lower dose, and less invasive molecular imaging technology will become a game-changer for understanding disease processes by unveiling new accurate image-based quantitative biomarkers, taking scientific and healthcare stakeholders a step closer to personalized precision medicine.
   

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;
Future prospects for image-derived input function in molecular imaging quantification with the 7 T MR-BrainPET insert
Frontiers in neuroscience 19, 1725728 () [10.3389/fnins.2025.1725728] OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Datensatz erzeugt am 2023-08-25, letzte Änderung am 2023-08-25



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)