001     1014307
005     20240313095004.0
037 _ _ |a FZJ-2023-03229
041 _ _ |a English
100 1 _ |a Villamar, Jose
|0 P:(DE-Juel1)191583
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Helmholtz Metadata Collaboration conference
|c Virtual
|d 2022-10-05 - 2022-10-06
|w Germany
245 _ _ |a Tracking large-scale simulations through unified metadata handling
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1695110044_7536
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Simulation is an essential pillar of knowledge generation in science. The numerical models used to describe, predict, and understand real-world systems are typically complex. Consequently, applying these models by means of simulation often poses high demands on computational resources, and requires high-performance computing (HPC) or other dedicated hardware architectures. Metadata describing the details of a numerical experiment arise at all stages of the simulation process: the conceptual description of the model, the model implementation, and the tools and machines used to run the simulation. Capturing these metadata and provenance information along the processing chain is a vital requirement for several purposes, e.g. reproducibility, benchmarking and validation, assessment of the reliability of the simulations, and data exploration [1,2]. The ability to search, share, and evaluate metadata and provenance traces from heterogeneous simulations and environments is a major challenge in provenance-driven analysis. The availability of a common metadata framework, which can be adopted by scientists from different scientific domains, would foster the meta-analysis of HPC simulation workflows [3]. Here, we develop a metadata management framework for generic HPC-based simulation research comprising concepts and tools for efficiently generating, organizing, and exploring metadata along a given simulation workflow. The derived solutions cope with the modularity and flexibility demands of rapidly progressing science and are applicable to diverse research fields. As a proof of concept, we will apply these solutions to use cases from environmental research and computational neuroscience.[1] Guilyardi, E., et. al. (2013) doi: 10.1175/BAMS-D-11-00035.1[2] Manninen, T., et. al. (2018) doi: 10.3389/fninf.2018.00020[3] Ivie, P., & Thain, D. (2018). doi: 10.1145/3186266
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)
|0 G:(DE-Juel-1)ZT-I-PF-3-026
|c ZT-I-PF-3-026
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 3
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 4
700 1 _ |a Kelbling, Matthias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Terhorst, Dennis
|0 P:(DE-Juel1)169778
|b 2
|u fzj
700 1 _ |a More, Heather
|0 P:(DE-Juel1)190225
|b 3
|u fzj
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 4
|u fzj
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 5
|u fzj
700 1 _ |a Thober, Stephan
|0 P:(DE-HGF)0
|b 6
909 C O |o oai:juser.fz-juelich.de:1014307
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)190225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 3
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21