| Home > Publications database > Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices > print |
| 001 | 1014310 | ||
| 005 | 20240313103117.0 | ||
| 024 | 7 | _ | |2 datacite_doi |a 10.34734/FZJ-2023-03232 |
| 037 | _ | _ | |a FZJ-2023-03232 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Golosio, Bruno |b 0 |
| 245 | _ | _ | |a Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices |
| 260 | _ | _ | |b arXiv |c 2023 |
| 336 | 7 | _ | |0 PUB:(DE-HGF)25 |2 PUB:(DE-HGF) |a Preprint |b preprint |m preprint |s 1695125438_13160 |
| 336 | 7 | _ | |2 ORCID |a WORKING_PAPER |
| 336 | 7 | _ | |0 28 |2 EndNote |a Electronic Article |
| 336 | 7 | _ | |2 DRIVER |a preprint |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 DataCite |a Output Types/Working Paper |
| 500 | _ | _ | |a 29 pages, 9 figures. This project was also funded by the Italian PNRR MUR project PE0000013-FAIR, funded by NextGenerationEU. |
| 520 | _ | _ | |a Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses, but also how long it takes to instantiate the network model in computer memory.On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized.On the software side, code generation approaches ensure highly optimized code, at the expense of repeated code regeneration and recompilation after modifications to the network model.Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules.We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models:a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules.With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies, while still meeting the flexibility demands of explorative network modeling. |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5232 |a 5232 - Computational Principles (POF4-523) |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5235 |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523) |c POF4-523 |f POF IV |x 1 |
| 536 | _ | _ | |0 G:(EU-Grant)945539 |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 2 |
| 536 | _ | _ | |0 G:(DE-Juel-1)ZT-I-PF-3-026 |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026) |c ZT-I-PF-3-026 |x 3 |
| 536 | _ | _ | |0 G:(DE-Juel1)JL SMHB-2021-2027 |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |c JL SMHB-2021-2027 |x 4 |
| 536 | _ | _ | |0 G:(DE-Juel1)jinb33_20220812 |a Brain-Scale Simulations (jinb33_20220812) |c jinb33_20220812 |f Brain-Scale Simulations |x 5 |
| 536 | _ | _ | |0 G:(EU-Grant)800858 |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858) |c 800858 |f H2020-SGA-INFRA-FETFLAG-HBP |x 6 |
| 536 | _ | _ | |0 G:(GEPRIS)491111487 |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |c 491111487 |x 7 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv |
| 700 | 1 | _ | |0 P:(DE-Juel1)191583 |a Villamar, Jose |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Tiddia, Gianmarco |b 2 |e Corresponding author |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Pastorelli, Elena |b 3 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Stapmanns, Jonas |b 4 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Fanti, Viviana |b 5 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Paolucci, Pier Stanislao |b 6 |
| 700 | 1 | _ | |0 P:(DE-Juel1)151166 |a Morrison, Abigail |b 7 |
| 700 | 1 | _ | |0 P:(DE-Juel1)162130 |a Senk, Johanna |b 8 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014310/files/2306.09855.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1014310 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy |b 0 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy |b 0 |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)191583 |a Forschungszentrum Jülich |b 1 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy |b 2 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy |b 2 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy |b 3 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52 428 Jülich, Germany |b 4 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy |b 5 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy |b 5 |
| 910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy |b 6 |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)151166 |a Forschungszentrum Jülich |b 7 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)162130 |a Forschungszentrum Jülich |b 8 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5232 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5235 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 1 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|