001014378 001__ 1014378
001014378 005__ 20240712100837.0
001014378 0247_ $$2doi$$a10.5194/acp-23-9549-2023
001014378 0247_ $$2ISSN$$a1680-7316
001014378 0247_ $$2ISSN$$a1680-7324
001014378 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03279
001014378 0247_ $$2WOS$$aWOS:001167516500001
001014378 037__ $$aFZJ-2023-03279
001014378 082__ $$a550
001014378 1001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b0$$eCorresponding author
001014378 245__ $$aThe quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
001014378 260__ $$aKatlenburg-Lindau$$bEGU$$c2023
001014378 3367_ $$2DRIVER$$aarticle
001014378 3367_ $$2DataCite$$aOutput Types/Journal article
001014378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1704979878_5290
001014378 3367_ $$2BibTeX$$aARTICLE
001014378 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014378 3367_ $$00$$2EndNote$$aJournal Article
001014378 520__ $$aThe quasi-biennial oscillation (QBO) of the stratospheric tropical winds influences the global circulation over a wide range of latitudes and altitudes. Although it has strong effects on surface weather and climate, climate models have great difficulties in simulating a realistic QBO, especially in the lower stratosphere. Therefore, global wind observations in the tropical upper troposphere and lower stratosphere (UTLS) are of particular interest for investigating the QBO and the tropical waves that contribute significantly to its driving. In our work, we focus on the years 2018–2022 and investigate the QBO and different tropical wave modes in the UTLS region using global wind observations made by the Aeolus satellite instrument and three meteorological reanalyses: the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5), the Japanese 55-year Reanalysis (JRA-55) of the Japan Meteorological Agency (JMA), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Further, we compare these data with observations of selected radiosonde stations. By comparison with Aeolus observations, we find that, on zonal average, the QBO in the lower stratosphere is well represented in all three reanalyses, with ERA-5 performing best. Averaged over the years 2018–2022, agreement between Aeolus and the reanalyses is better than 1 to 2 m s−1, with somewhat larger differences during some periods. Differently from zonal averages, radiosonde stations provide only local observations and are therefore biased by global-scale tropical waves, which limits their use as a QBO standard. While reanalyses perform well on zonal average, there can be considerable local biases between reanalyses and radiosondes. We also find that, in the tropical UTLS, zonal wind variances of stationary waves and the most prominent global-scale traveling equatorial wave modes, such as Kelvin waves, Rossby-gravity waves, and equatorial Rossby waves, are in good agreement between Aeolus and all three reanalyses (in most cases better than 20 % of the peak values in the UTLS). On zonal average, this supports the use of reanalyses as a reference for comparison with free-running climate models, while locally, certain biases exist, particularly in the QBO wind shear zones and around the 2019–2020 QBO disruption.
001014378 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001014378 536__ $$0G:(DE-HGF)POF4-2A3$$a2A3 - Remote Sensing  (CARF - CCA) (POF4-2A3)$$cPOF4-2A3$$fPOF IV$$x1
001014378 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014378 7001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou A.$$b1
001014378 7001_ $$0P:(DE-Juel1)173706$$aKhordakova, Dina$$b2$$ufzj
001014378 7001_ $$0P:(DE-HGF)0$$aKrisch, Isabell$$b3
001014378 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b4$$ufzj
001014378 7001_ $$0P:(DE-HGF)0$$aReitebuch, Oliver$$b5
001014378 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b6$$ufzj
001014378 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
001014378 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-9549-2023$$gVol. 23, no. 16, p. 9549 - 9583$$n16$$p9549 - 9583$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001014378 8564_ $$uhttps://juser.fz-juelich.de/record/1014378/files/Invoice_Helmholtz-PUC-2023-75.pdf
001014378 8564_ $$uhttps://juser.fz-juelich.de/record/1014378/files/acp-23-9549-2023.pdf$$yOpenAccess
001014378 8767_ $$8Helmholtz-PUC-2023-75$$92023-08-30$$a1200196152$$d2023-09-01$$eAPC$$jZahlung erfolgt$$v498.75
001014378 909CO $$ooai:juser.fz-juelich.de:1014378$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001014378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b0$$kFZJ
001014378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b1$$kFZJ
001014378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173706$$aForschungszentrum Jülich$$b2$$kFZJ
001014378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b4$$kFZJ
001014378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b6$$kFZJ
001014378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
001014378 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001014378 9131_ $$0G:(DE-HGF)POF4-2A3$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vRemote Sensing  (CARF - CCA)$$x1
001014378 9141_ $$y2023
001014378 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014378 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001014378 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001014378 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001014378 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001014378 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014378 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001014378 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001014378 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014378 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001014378 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001014378 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001014378 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001014378 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001014378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001014378 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001014378 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001014378 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001014378 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001014378 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001014378 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001014378 9801_ $$aAPC
001014378 9801_ $$aFullTexts
001014378 980__ $$ajournal
001014378 980__ $$aVDB
001014378 980__ $$aI:(DE-Juel1)IEK-7-20101013
001014378 980__ $$aAPC
001014378 980__ $$aUNRESTRICTED
001014378 981__ $$aI:(DE-Juel1)ICE-4-20101013